datasets_panda50m.py 5.74 KB
Newer Older
yangzhong's avatar
yangzhong committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
import csv
csv.field_size_limit(5000000)
import os

import numpy as np
import torch
import torchvision
import torchvision.transforms as transforms
from torchvision.datasets.folder import IMG_EXTENSIONS, pil_loader

from . import video_transforms
from .utils import center_crop_arr
# import video_transforms
# from utils import center_crop_arr

import json
from torch.utils.data import DataLoader
from torch.utils.data.distributed import DistributedSampler
import json
import ast
import pandas as pd


def get_transforms_video(resolution=256):
    transform_video = transforms.Compose(
        [
            video_transforms.ToTensorVideo(),  # TCHW
            video_transforms.RandomHorizontalFlipVideo(),
            video_transforms.UCFCenterCropVideo(resolution),
            transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True),
        ]
    )
    return transform_video


def get_transforms_image(image_size=256):
    transform = transforms.Compose(
        [
            transforms.Lambda(lambda pil_image: center_crop_arr(pil_image, image_size)),
            transforms.RandomHorizontalFlip(),
            transforms.ToTensor(),
            transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True),
        ]
    )
    return transform


#  open-sora-plan+magictime dataset
class DatasetFromCSV(torch.utils.data.Dataset):
    """load video according to the csv file.

    Args:
        target_video_len (int): the number of video frames will be load.
        align_transform (callable): Align different videos in a specified size.
        temporal_sample (callable): Sample the target length of a video.
    """

    def __init__(
        self,
        csv_path,
        num_frames=16,
        frame_interval=1,
        transform=None,
        root=None,
    ):
        # video_samples = []
        # with open(csv_path, "r") as f:
        #     reader = csv.reader(f)
        #     #csv_list = list(reader)
        #     for idx, v_s in enumerate(reader):
        #         vid_path = v_s[0]
        #         vid_caption = v_s[1]
        #         if os.path.exists(vid_path):
        #             video_samples.append([vid_path, vid_caption])
        #         if idx % 1000 == 0:
        #             print(idx)
        video_samples = pd.read_csv(csv_path)

        self.samples = video_samples  #
        print('video num:', self.samples.shape[0])

        self.is_video = True
        self.transform = transform
        self.num_frames = num_frames
        self.frame_interval = frame_interval
        self.temporal_sample = video_transforms.TemporalRandomCrop(num_frames * frame_interval)
        self.root = root

    def getitem(self, index):
        sample = self.samples.iloc[index].values
        path = sample[0]
        text = sample[1]

        if self.is_video:
            is_exit = os.path.exists(path)
            if is_exit:
                vframes, aframes, info = torchvision.io.read_video(filename=path, pts_unit="sec", output_format="TCHW")
                total_frames = len(vframes)
            else:
                total_frames = 0
            
            loop_index = index
            while(total_frames < self.num_frames or is_exit == False):
                #print("total_frames:", total_frames, "<", self.num_frames, ", or", path, "does not exit!!!")
                loop_index += 1
                if loop_index >= self.samples.shape[0]:
                    loop_index = 0
                sample = self.samples.iloc[loop_index].values
                path = sample[0]
                text = sample[1]

                is_exit = os.path.exists(path)
                if is_exit:
                    vframes, aframes, info = torchvision.io.read_video(filename=path, pts_unit="sec", output_format="TCHW")
                    total_frames = len(vframes)
                else:
                    total_frames = 0
            #  video exits and total_frames >= self.num_frames
            
            # Sampling video frames
            start_frame_ind, end_frame_ind = self.temporal_sample(total_frames)
            assert (
                end_frame_ind - start_frame_ind >= self.num_frames
            ), f"{path} with index {index} has not enough frames."
            frame_indice = np.linspace(start_frame_ind, end_frame_ind - 1, self.num_frames, dtype=int)
            
            #print("total_frames:", total_frames, "frame_indice:", frame_indice, "sample:", sample)
            video = vframes[frame_indice]
            video = self.transform(video)  # T C H W
        else:
            image = pil_loader(path)
            image = self.transform(image)
            video = image.unsqueeze(0).repeat(self.num_frames, 1, 1, 1)

        # TCHW -> CTHW
        video = video.permute(1, 0, 2, 3)

        return {"video": video, "text": text}

    def __getitem__(self, index):
        for _ in range(10):
            try:
                return self.getitem(index)
            except Exception as e:
                print(e)
                index = np.random.randint(len(self))
        raise RuntimeError("Too many bad data.")

    def __len__(self):
        return self.samples.shape[0]


if __name__ == '__main__':
    data_path = '/mnt/bn/videodataset-uswest/VDiT/dataset/panda50m/panda70m_training_full.csv'
    root='/mnt/bn/videodataset-uswest/panda70m'
    dataset = DatasetFromCSV(
        data_path,
        transform=get_transforms_video(),
        num_frames=16,
        frame_interval=3,
        root=root,
    )
    sampler = DistributedSampler(
    dataset,
    num_replicas=1,
    rank=0,
    shuffle=True,
    seed=1
    )
    loader = DataLoader(
        dataset,
        batch_size=1,
        shuffle=False,
        sampler=sampler,
        num_workers=0,
        pin_memory=True,
        drop_last=True
    )
    for video_data in loader:
        print(video_data)