import csv csv.field_size_limit(5000000) import os import numpy as np import torch import torchvision import torchvision.transforms as transforms from torchvision.datasets.folder import IMG_EXTENSIONS, pil_loader from . import video_transforms from .utils import center_crop_arr # import video_transforms # from utils import center_crop_arr import json from torch.utils.data import DataLoader from torch.utils.data.distributed import DistributedSampler import json import ast import pandas as pd def get_transforms_video(resolution=256): transform_video = transforms.Compose( [ video_transforms.ToTensorVideo(), # TCHW video_transforms.RandomHorizontalFlipVideo(), video_transforms.UCFCenterCropVideo(resolution), transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True), ] ) return transform_video def get_transforms_image(image_size=256): transform = transforms.Compose( [ transforms.Lambda(lambda pil_image: center_crop_arr(pil_image, image_size)), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], inplace=True), ] ) return transform # open-sora-plan+magictime dataset class DatasetFromCSV(torch.utils.data.Dataset): """load video according to the csv file. Args: target_video_len (int): the number of video frames will be load. align_transform (callable): Align different videos in a specified size. temporal_sample (callable): Sample the target length of a video. """ def __init__( self, csv_path, num_frames=16, frame_interval=1, transform=None, root=None, ): # video_samples = [] # with open(csv_path, "r") as f: # reader = csv.reader(f) # #csv_list = list(reader) # for idx, v_s in enumerate(reader): # vid_path = v_s[0] # vid_caption = v_s[1] # if os.path.exists(vid_path): # video_samples.append([vid_path, vid_caption]) # if idx % 1000 == 0: # print(idx) video_samples = pd.read_csv(csv_path) self.samples = video_samples # print('video num:', self.samples.shape[0]) self.is_video = True self.transform = transform self.num_frames = num_frames self.frame_interval = frame_interval self.temporal_sample = video_transforms.TemporalRandomCrop(num_frames * frame_interval) self.root = root def getitem(self, index): sample = self.samples.iloc[index].values path = sample[0] text = sample[1] if self.is_video: is_exit = os.path.exists(path) if is_exit: vframes, aframes, info = torchvision.io.read_video(filename=path, pts_unit="sec", output_format="TCHW") total_frames = len(vframes) else: total_frames = 0 loop_index = index while(total_frames < self.num_frames or is_exit == False): #print("total_frames:", total_frames, "<", self.num_frames, ", or", path, "does not exit!!!") loop_index += 1 if loop_index >= self.samples.shape[0]: loop_index = 0 sample = self.samples.iloc[loop_index].values path = sample[0] text = sample[1] is_exit = os.path.exists(path) if is_exit: vframes, aframes, info = torchvision.io.read_video(filename=path, pts_unit="sec", output_format="TCHW") total_frames = len(vframes) else: total_frames = 0 # video exits and total_frames >= self.num_frames # Sampling video frames start_frame_ind, end_frame_ind = self.temporal_sample(total_frames) assert ( end_frame_ind - start_frame_ind >= self.num_frames ), f"{path} with index {index} has not enough frames." frame_indice = np.linspace(start_frame_ind, end_frame_ind - 1, self.num_frames, dtype=int) #print("total_frames:", total_frames, "frame_indice:", frame_indice, "sample:", sample) video = vframes[frame_indice] video = self.transform(video) # T C H W else: image = pil_loader(path) image = self.transform(image) video = image.unsqueeze(0).repeat(self.num_frames, 1, 1, 1) # TCHW -> CTHW video = video.permute(1, 0, 2, 3) return {"video": video, "text": text} def __getitem__(self, index): for _ in range(10): try: return self.getitem(index) except Exception as e: print(e) index = np.random.randint(len(self)) raise RuntimeError("Too many bad data.") def __len__(self): return self.samples.shape[0] if __name__ == '__main__': data_path = '/mnt/bn/videodataset-uswest/VDiT/dataset/panda50m/panda70m_training_full.csv' root='/mnt/bn/videodataset-uswest/panda70m' dataset = DatasetFromCSV( data_path, transform=get_transforms_video(), num_frames=16, frame_interval=3, root=root, ) sampler = DistributedSampler( dataset, num_replicas=1, rank=0, shuffle=True, seed=1 ) loader = DataLoader( dataset, batch_size=1, shuffle=False, sampler=sampler, num_workers=0, pin_memory=True, drop_last=True ) for video_data in loader: print(video_data)