inference.py 6.72 KB
Newer Older
1
2
import warnings

Kai Chen's avatar
Kai Chen committed
3
import matplotlib.pyplot as plt
myownskyW7's avatar
myownskyW7 committed
4
5
import mmcv
import numpy as np
6
import pycocotools.mask as maskUtils
myownskyW7's avatar
myownskyW7 committed
7
import torch
8
from mmcv.parallel import collate, scatter
9
from mmcv.runner import load_checkpoint
myownskyW7's avatar
myownskyW7 committed
10

11
from mmdet.core import get_classes
12
from mmdet.datasets.pipelines import Compose
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
from mmdet.models import build_detector


def init_detector(config, checkpoint=None, device='cuda:0'):
    """Initialize a detector from config file.

    Args:
        config (str or :obj:`mmcv.Config`): Config file path or the config
            object.
        checkpoint (str, optional): Checkpoint path. If left as None, the model
            will not load any weights.

    Returns:
        nn.Module: The constructed detector.
    """
    if isinstance(config, str):
        config = mmcv.Config.fromfile(config)
    elif not isinstance(config, mmcv.Config):
        raise TypeError('config must be a filename or Config object, '
                        'but got {}'.format(type(config)))
    config.model.pretrained = None
    model = build_detector(config.model, test_cfg=config.test_cfg)
    if checkpoint is not None:
        checkpoint = load_checkpoint(model, checkpoint)
        if 'CLASSES' in checkpoint['meta']:
38
            model.CLASSES = checkpoint['meta']['CLASSES']
39
40
41
42
43
44
45
46
47
48
        else:
            warnings.warn('Class names are not saved in the checkpoint\'s '
                          'meta data, use COCO classes by default.')
            model.CLASSES = get_classes('coco')
    model.cfg = config  # save the config in the model for convenience
    model.to(device)
    model.eval()
    return model


49
50
51
class LoadImage(object):

    def __call__(self, results):
Kai Chen's avatar
Kai Chen committed
52
53
54
55
        if isinstance(results['img'], str):
            results['filename'] = results['img']
        else:
            results['filename'] = None
56
57
        img = mmcv.imread(results['img'])
        results['img'] = img
Kai Chen's avatar
Kai Chen committed
58
        results['img_shape'] = img.shape
59
60
61
62
63
        results['ori_shape'] = img.shape
        return results


def inference_detector(model, img):
64
65
66
67
68
69
70
71
72
73
74
75
76
    """Inference image(s) with the detector.

    Args:
        model (nn.Module): The loaded detector.
        imgs (str/ndarray or list[str/ndarray]): Either image files or loaded
            images.

    Returns:
        If imgs is a str, a generator will be returned, otherwise return the
        detection results directly.
    """
    cfg = model.cfg
    device = next(model.parameters()).device  # model device
77
78
79
80
81
82
83
84
    # build the data pipeline
    test_pipeline = [LoadImage()] + cfg.data.test.pipeline[1:]
    test_pipeline = Compose(test_pipeline)
    # prepare data
    data = dict(img=img)
    data = test_pipeline(data)
    data = scatter(collate([data], samples_per_gpu=1), [device])[0]
    # forward the model
Kai Chen's avatar
Kai Chen committed
85
86
    with torch.no_grad():
        result = model(return_loss=False, rescale=True, **data)
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
    return result


async def async_inference_detector(model, img):
    """Async inference image(s) with the detector.

    Args:
        model (nn.Module): The loaded detector.
        imgs (str/ndarray or list[str/ndarray]): Either image files or loaded
            images.

    Returns:
        Awaitable detection results.
    """
    cfg = model.cfg
    device = next(model.parameters()).device  # model device
    # build the data pipeline
    test_pipeline = [LoadImage()] + cfg.data.test.pipeline[1:]
    test_pipeline = Compose(test_pipeline)
    # prepare data
    data = dict(img=img)
    data = test_pipeline(data)
    data = scatter(collate([data], samples_per_gpu=1), [device])[0]
Kai Chen's avatar
Kai Chen committed
110

111
112
113
114
    # We don't restore `torch.is_grad_enabled()` value during concurrent
    # inference since execution can overlap
    torch.set_grad_enabled(False)
    result = await model.aforward_test(rescale=True, **data)
115
    return result
Kai Chen's avatar
Kai Chen committed
116

myownskyW7's avatar
myownskyW7 committed
117

118
# TODO: merge this method with the one in BaseDetector
simon wu's avatar
simon wu committed
119
120
121
122
123
def show_result(img,
                result,
                class_names,
                score_thr=0.3,
                wait_time=0,
Kai Chen's avatar
Kai Chen committed
124
                show=True,
simon wu's avatar
simon wu committed
125
                out_file=None):
126
    """Visualize the detection results on the image.
myownskyW7's avatar
myownskyW7 committed
127

128
129
130
131
132
133
    Args:
        img (str or np.ndarray): Image filename or loaded image.
        result (tuple[list] or list): The detection result, can be either
            (bbox, segm) or just bbox.
        class_names (list[str] or tuple[str]): A list of class names.
        score_thr (float): The threshold to visualize the bboxes and masks.
simon wu's avatar
simon wu committed
134
        wait_time (int): Value of waitKey param.
Kai Chen's avatar
Kai Chen committed
135
        show (bool, optional): Whether to show the image with opencv or not.
136
137
        out_file (str, optional): If specified, the visualization result will
            be written to the out file instead of shown in a window.
Kai Chen's avatar
Kai Chen committed
138
139
140
141

    Returns:
        np.ndarray or None: If neither `show` nor `out_file` is specified, the
            visualized image is returned, otherwise None is returned.
142
143
    """
    assert isinstance(class_names, (tuple, list))
144
    img = mmcv.imread(img)
Kai Chen's avatar
Kai Chen committed
145
    img = img.copy()
146
147
148
149
150
151
152
153
154
155
    if isinstance(result, tuple):
        bbox_result, segm_result = result
    else:
        bbox_result, segm_result = result, None
    bboxes = np.vstack(bbox_result)
    # draw segmentation masks
    if segm_result is not None:
        segms = mmcv.concat_list(segm_result)
        inds = np.where(bboxes[:, -1] > score_thr)[0]
        for i in inds:
156
            color_mask = np.random.randint(0, 256, (1, 3), dtype=np.uint8)
157
158
159
            mask = maskUtils.decode(segms[i]).astype(np.bool)
            img[mask] = img[mask] * 0.5 + color_mask * 0.5
    # draw bounding boxes
myownskyW7's avatar
myownskyW7 committed
160
161
    labels = [
        np.full(bbox.shape[0], i, dtype=np.int32)
162
        for i, bbox in enumerate(bbox_result)
myownskyW7's avatar
myownskyW7 committed
163
164
165
    ]
    labels = np.concatenate(labels)
    mmcv.imshow_det_bboxes(
Kai Chen's avatar
Kai Chen committed
166
        img,
myownskyW7's avatar
myownskyW7 committed
167
168
169
        bboxes,
        labels,
        class_names=class_names,
170
        score_thr=score_thr,
Kai Chen's avatar
Kai Chen committed
171
        show=show,
simon wu's avatar
simon wu committed
172
        wait_time=wait_time,
zhijl's avatar
zhijl committed
173
        out_file=out_file)
Kai Chen's avatar
Kai Chen committed
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
    if not (show or out_file):
        return img


def show_result_pyplot(img,
                       result,
                       class_names,
                       score_thr=0.3,
                       fig_size=(15, 10)):
    """Visualize the detection results on the image.

    Args:
        img (str or np.ndarray): Image filename or loaded image.
        result (tuple[list] or list): The detection result, can be either
            (bbox, segm) or just bbox.
        class_names (list[str] or tuple[str]): A list of class names.
        score_thr (float): The threshold to visualize the bboxes and masks.
        fig_size (tuple): Figure size of the pyplot figure.
        out_file (str, optional): If specified, the visualization result will
            be written to the out file instead of shown in a window.
    """
    img = show_result(
        img, result, class_names, score_thr=score_thr, show=False)
    plt.figure(figsize=fig_size)
    plt.imshow(mmcv.bgr2rgb(img))