inference.py 4.86 KB
Newer Older
1
2
import warnings

myownskyW7's avatar
myownskyW7 committed
3
4
import mmcv
import numpy as np
5
import pycocotools.mask as maskUtils
myownskyW7's avatar
myownskyW7 committed
6
import torch
7
from mmcv.runner import load_checkpoint
myownskyW7's avatar
myownskyW7 committed
8

9
from mmdet.core import get_classes
myownskyW7's avatar
myownskyW7 committed
10
11
from mmdet.datasets import to_tensor
from mmdet.datasets.transforms import ImageTransform
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
from mmdet.models import build_detector


def init_detector(config, checkpoint=None, device='cuda:0'):
    """Initialize a detector from config file.

    Args:
        config (str or :obj:`mmcv.Config`): Config file path or the config
            object.
        checkpoint (str, optional): Checkpoint path. If left as None, the model
            will not load any weights.

    Returns:
        nn.Module: The constructed detector.
    """
    if isinstance(config, str):
        config = mmcv.Config.fromfile(config)
    elif not isinstance(config, mmcv.Config):
        raise TypeError('config must be a filename or Config object, '
                        'but got {}'.format(type(config)))
    config.model.pretrained = None
    model = build_detector(config.model, test_cfg=config.test_cfg)
    if checkpoint is not None:
        checkpoint = load_checkpoint(model, checkpoint)
        if 'CLASSES' in checkpoint['meta']:
37
            model.CLASSES = checkpoint['meta']['CLASSES']
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
        else:
            warnings.warn('Class names are not saved in the checkpoint\'s '
                          'meta data, use COCO classes by default.')
            model.CLASSES = get_classes('coco')
    model.cfg = config  # save the config in the model for convenience
    model.to(device)
    model.eval()
    return model


def inference_detector(model, imgs):
    """Inference image(s) with the detector.

    Args:
        model (nn.Module): The loaded detector.
        imgs (str/ndarray or list[str/ndarray]): Either image files or loaded
            images.

    Returns:
        If imgs is a str, a generator will be returned, otherwise return the
        detection results directly.
    """
    cfg = model.cfg
    img_transform = ImageTransform(
        size_divisor=cfg.data.test.size_divisor, **cfg.img_norm_cfg)

    device = next(model.parameters()).device  # model device
    if not isinstance(imgs, list):
        return _inference_single(model, imgs, img_transform, device)
    else:
        return _inference_generator(model, imgs, img_transform, device)
myownskyW7's avatar
myownskyW7 committed
69
70
71
72
73


def _prepare_data(img, img_transform, cfg, device):
    ori_shape = img.shape
    img, img_shape, pad_shape, scale_factor = img_transform(
高志华's avatar
高志华 committed
74
75
76
        img,
        scale=cfg.data.test.img_scale,
        keep_ratio=cfg.data.test.get('resize_keep_ratio', True))
myownskyW7's avatar
myownskyW7 committed
77
78
79
80
81
82
83
84
85
86
87
88
    img = to_tensor(img).to(device).unsqueeze(0)
    img_meta = [
        dict(
            ori_shape=ori_shape,
            img_shape=img_shape,
            pad_shape=pad_shape,
            scale_factor=scale_factor,
            flip=False)
    ]
    return dict(img=[img], img_meta=[img_meta])


89
def _inference_single(model, img, img_transform, device):
Kai Chen's avatar
Kai Chen committed
90
    img = mmcv.imread(img)
91
    data = _prepare_data(img, img_transform, model.cfg, device)
Kai Chen's avatar
Kai Chen committed
92
93
94
95
96
    with torch.no_grad():
        result = model(return_loss=False, rescale=True, **data)
    return result


97
def _inference_generator(model, imgs, img_transform, device):
Kai Chen's avatar
Kai Chen committed
98
    for img in imgs:
99
        yield _inference_single(model, img, img_transform, device)
Kai Chen's avatar
Kai Chen committed
100

myownskyW7's avatar
myownskyW7 committed
101

102
103
104
# TODO: merge this method with the one in BaseDetector
def show_result(img, result, class_names, score_thr=0.3, out_file=None):
    """Visualize the detection results on the image.
myownskyW7's avatar
myownskyW7 committed
105

106
107
108
109
110
111
112
113
114
115
    Args:
        img (str or np.ndarray): Image filename or loaded image.
        result (tuple[list] or list): The detection result, can be either
            (bbox, segm) or just bbox.
        class_names (list[str] or tuple[str]): A list of class names.
        score_thr (float): The threshold to visualize the bboxes and masks.
        out_file (str, optional): If specified, the visualization result will
            be written to the out file instead of shown in a window.
    """
    assert isinstance(class_names, (tuple, list))
116
117
118
119
120
121
122
123
124
125
126
    img = mmcv.imread(img)
    if isinstance(result, tuple):
        bbox_result, segm_result = result
    else:
        bbox_result, segm_result = result, None
    bboxes = np.vstack(bbox_result)
    # draw segmentation masks
    if segm_result is not None:
        segms = mmcv.concat_list(segm_result)
        inds = np.where(bboxes[:, -1] > score_thr)[0]
        for i in inds:
127
            color_mask = np.random.randint(0, 256, (1, 3), dtype=np.uint8)
128
129
130
            mask = maskUtils.decode(segms[i]).astype(np.bool)
            img[mask] = img[mask] * 0.5 + color_mask * 0.5
    # draw bounding boxes
myownskyW7's avatar
myownskyW7 committed
131
132
    labels = [
        np.full(bbox.shape[0], i, dtype=np.int32)
133
        for i, bbox in enumerate(bbox_result)
myownskyW7's avatar
myownskyW7 committed
134
135
136
137
138
139
140
    ]
    labels = np.concatenate(labels)
    mmcv.imshow_det_bboxes(
        img.copy(),
        bboxes,
        labels,
        class_names=class_names,
141
        score_thr=score_thr,
zhijl's avatar
zhijl committed
142
143
        show=out_file is None,
        out_file=out_file)