base.py 4.22 KB
Newer Older
1
import logging
Kai Chen's avatar
Kai Chen committed
2
3
from abc import ABCMeta, abstractmethod

4
5
import mmcv
import numpy as np
Kai Chen's avatar
Kai Chen committed
6
import torch.nn as nn
Kai Chen's avatar
Kai Chen committed
7
import pycocotools.mask as maskUtils
Kai Chen's avatar
Kai Chen committed
8

9
10
from mmdet.core import tensor2imgs, get_classes

Kai Chen's avatar
Kai Chen committed
11
12
13
14
15
16
17
18
19

class BaseDetector(nn.Module):
    """Base class for detectors"""

    __metaclass__ = ABCMeta

    def __init__(self):
        super(BaseDetector, self).__init__()

Kai Chen's avatar
Kai Chen committed
20
21
22
23
24
25
26
27
28
29
30
31
    @property
    def with_neck(self):
        return hasattr(self, 'neck') and self.neck is not None

    @property
    def with_bbox(self):
        return hasattr(self, 'bbox_head') and self.bbox_head is not None

    @property
    def with_mask(self):
        return hasattr(self, 'mask_head') and self.mask_head is not None

Kai Chen's avatar
Kai Chen committed
32
33
34
35
36
    @abstractmethod
    def extract_feat(self, imgs):
        pass

    def extract_feats(self, imgs):
Kai Chen's avatar
Kai Chen committed
37
38
39
        assert isinstance(imgs, list)
        for img in imgs:
            yield self.extract_feat(img)
Kai Chen's avatar
Kai Chen committed
40
41
42
43
44
45
46
47
48
49
50
51
52

    @abstractmethod
    def forward_train(self, imgs, img_metas, **kwargs):
        pass

    @abstractmethod
    def simple_test(self, img, img_meta, **kwargs):
        pass

    @abstractmethod
    def aug_test(self, imgs, img_metas, **kwargs):
        pass

53
54
55
56
57
    def init_weights(self, pretrained=None):
        if pretrained is not None:
            logger = logging.getLogger()
            logger.info('load model from: {}'.format(pretrained))

Kai Chen's avatar
Kai Chen committed
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
    def forward_test(self, imgs, img_metas, **kwargs):
        for var, name in [(imgs, 'imgs'), (img_metas, 'img_metas')]:
            if not isinstance(var, list):
                raise TypeError('{} must be a list, but got {}'.format(
                    name, type(var)))

        num_augs = len(imgs)
        if num_augs != len(img_metas):
            raise ValueError(
                'num of augmentations ({}) != num of image meta ({})'.format(
                    len(imgs), len(img_metas)))
        # TODO: remove the restriction of imgs_per_gpu == 1 when prepared
        imgs_per_gpu = imgs[0].size(0)
        assert imgs_per_gpu == 1

        if num_augs == 1:
            return self.simple_test(imgs[0], img_metas[0], **kwargs)
        else:
            return self.aug_test(imgs, img_metas, **kwargs)

    def forward(self, img, img_meta, return_loss=True, **kwargs):
        if return_loss:
            return self.forward_train(img, img_meta, **kwargs)
        else:
            return self.forward_test(img, img_meta, **kwargs)
83
84
85
86
87
88
89

    def show_result(self,
                    data,
                    result,
                    img_norm_cfg,
                    dataset='coco',
                    score_thr=0.3):
Kai Chen's avatar
Kai Chen committed
90
91
92
93
94
        if isinstance(result, tuple):
            bbox_result, segm_result = result
        else:
            bbox_result, segm_result = result, None

95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
        img_tensor = data['img'][0]
        img_metas = data['img_meta'][0].data[0]
        imgs = tensor2imgs(img_tensor, **img_norm_cfg)
        assert len(imgs) == len(img_metas)

        if isinstance(dataset, str):
            class_names = get_classes(dataset)
        elif isinstance(dataset, list):
            class_names = dataset
        else:
            raise TypeError('dataset must be a valid dataset name or a list'
                            ' of class names, not {}'.format(type(dataset)))

        for img, img_meta in zip(imgs, img_metas):
            h, w, _ = img_meta['img_shape']
            img_show = img[:h, :w, :]
Kai Chen's avatar
Kai Chen committed
111
112
113
114
115
116
117
118
119
120
121
122

            bboxes = np.vstack(bbox_result)
            # draw segmentation masks
            if segm_result is not None:
                segms = mmcv.concat_list(segm_result)
                inds = np.where(bboxes[:, -1] > score_thr)[0]
                for i in inds:
                    color_mask = np.random.randint(
                        0, 256, (1, 3), dtype=np.uint8)
                    mask = maskUtils.decode(segms[i]).astype(np.bool)
                    img_show[mask] = img_show[mask] * 0.5 + color_mask * 0.5
            # draw bounding boxes
123
124
            labels = [
                np.full(bbox.shape[0], i, dtype=np.int32)
Kai Chen's avatar
Kai Chen committed
125
                for i, bbox in enumerate(bbox_result)
126
127
128
129
130
131
132
133
            ]
            labels = np.concatenate(labels)
            mmcv.imshow_det_bboxes(
                img_show,
                bboxes,
                labels,
                class_names=class_names,
                score_thr=score_thr)