base.py 3.3 KB
Newer Older
1
import logging
Kai Chen's avatar
Kai Chen committed
2
3
from abc import ABCMeta, abstractmethod

4
5
import mmcv
import numpy as np
Kai Chen's avatar
Kai Chen committed
6
7
8
import torch
import torch.nn as nn

9
10
from mmdet.core import tensor2imgs, get_classes

Kai Chen's avatar
Kai Chen committed
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

class BaseDetector(nn.Module):
    """Base class for detectors"""

    __metaclass__ = ABCMeta

    def __init__(self):
        super(BaseDetector, self).__init__()

    @abstractmethod
    def extract_feat(self, imgs):
        pass

    def extract_feats(self, imgs):
        if isinstance(imgs, torch.Tensor):
            return self.extract_feat(imgs)
        elif isinstance(imgs, list):
            for img in imgs:
                yield self.extract_feat(img)

    @abstractmethod
    def forward_train(self, imgs, img_metas, **kwargs):
        pass

    @abstractmethod
    def simple_test(self, img, img_meta, **kwargs):
        pass

    @abstractmethod
    def aug_test(self, imgs, img_metas, **kwargs):
        pass

43
44
45
46
47
    def init_weights(self, pretrained=None):
        if pretrained is not None:
            logger = logging.getLogger()
            logger.info('load model from: {}'.format(pretrained))

Kai Chen's avatar
Kai Chen committed
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
    def forward_test(self, imgs, img_metas, **kwargs):
        for var, name in [(imgs, 'imgs'), (img_metas, 'img_metas')]:
            if not isinstance(var, list):
                raise TypeError('{} must be a list, but got {}'.format(
                    name, type(var)))

        num_augs = len(imgs)
        if num_augs != len(img_metas):
            raise ValueError(
                'num of augmentations ({}) != num of image meta ({})'.format(
                    len(imgs), len(img_metas)))
        # TODO: remove the restriction of imgs_per_gpu == 1 when prepared
        imgs_per_gpu = imgs[0].size(0)
        assert imgs_per_gpu == 1

        if num_augs == 1:
            return self.simple_test(imgs[0], img_metas[0], **kwargs)
        else:
            return self.aug_test(imgs, img_metas, **kwargs)

    def forward(self, img, img_meta, return_loss=True, **kwargs):
        if return_loss:
            return self.forward_train(img, img_meta, **kwargs)
        else:
            return self.forward_test(img, img_meta, **kwargs)
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107

    def show_result(self,
                    data,
                    result,
                    img_norm_cfg,
                    dataset='coco',
                    score_thr=0.3):
        img_tensor = data['img'][0]
        img_metas = data['img_meta'][0].data[0]
        imgs = tensor2imgs(img_tensor, **img_norm_cfg)
        assert len(imgs) == len(img_metas)

        if isinstance(dataset, str):
            class_names = get_classes(dataset)
        elif isinstance(dataset, list):
            class_names = dataset
        else:
            raise TypeError('dataset must be a valid dataset name or a list'
                            ' of class names, not {}'.format(type(dataset)))

        for img, img_meta in zip(imgs, img_metas):
            h, w, _ = img_meta['img_shape']
            img_show = img[:h, :w, :]
            labels = [
                np.full(bbox.shape[0], i, dtype=np.int32)
                for i, bbox in enumerate(result)
            ]
            labels = np.concatenate(labels)
            bboxes = np.vstack(result)
            mmcv.imshow_det_bboxes(
                img_show,
                bboxes,
                labels,
                class_names=class_names,
                score_thr=score_thr)