import logging from abc import ABCMeta, abstractmethod import mmcv import numpy as np import torch.nn as nn import pycocotools.mask as maskUtils from mmdet.core import tensor2imgs, get_classes class BaseDetector(nn.Module): """Base class for detectors""" __metaclass__ = ABCMeta def __init__(self): super(BaseDetector, self).__init__() @property def with_neck(self): return hasattr(self, 'neck') and self.neck is not None @property def with_bbox(self): return hasattr(self, 'bbox_head') and self.bbox_head is not None @property def with_mask(self): return hasattr(self, 'mask_head') and self.mask_head is not None @abstractmethod def extract_feat(self, imgs): pass def extract_feats(self, imgs): assert isinstance(imgs, list) for img in imgs: yield self.extract_feat(img) @abstractmethod def forward_train(self, imgs, img_metas, **kwargs): pass @abstractmethod def simple_test(self, img, img_meta, **kwargs): pass @abstractmethod def aug_test(self, imgs, img_metas, **kwargs): pass def init_weights(self, pretrained=None): if pretrained is not None: logger = logging.getLogger() logger.info('load model from: {}'.format(pretrained)) def forward_test(self, imgs, img_metas, **kwargs): for var, name in [(imgs, 'imgs'), (img_metas, 'img_metas')]: if not isinstance(var, list): raise TypeError('{} must be a list, but got {}'.format( name, type(var))) num_augs = len(imgs) if num_augs != len(img_metas): raise ValueError( 'num of augmentations ({}) != num of image meta ({})'.format( len(imgs), len(img_metas))) # TODO: remove the restriction of imgs_per_gpu == 1 when prepared imgs_per_gpu = imgs[0].size(0) assert imgs_per_gpu == 1 if num_augs == 1: return self.simple_test(imgs[0], img_metas[0], **kwargs) else: return self.aug_test(imgs, img_metas, **kwargs) def forward(self, img, img_meta, return_loss=True, **kwargs): if return_loss: return self.forward_train(img, img_meta, **kwargs) else: return self.forward_test(img, img_meta, **kwargs) def show_result(self, data, result, img_norm_cfg, dataset='coco', score_thr=0.3): if isinstance(result, tuple): bbox_result, segm_result = result else: bbox_result, segm_result = result, None img_tensor = data['img'][0] img_metas = data['img_meta'][0].data[0] imgs = tensor2imgs(img_tensor, **img_norm_cfg) assert len(imgs) == len(img_metas) if isinstance(dataset, str): class_names = get_classes(dataset) elif isinstance(dataset, list): class_names = dataset else: raise TypeError('dataset must be a valid dataset name or a list' ' of class names, not {}'.format(type(dataset))) for img, img_meta in zip(imgs, img_metas): h, w, _ = img_meta['img_shape'] img_show = img[:h, :w, :] bboxes = np.vstack(bbox_result) # draw segmentation masks if segm_result is not None: segms = mmcv.concat_list(segm_result) inds = np.where(bboxes[:, -1] > score_thr)[0] for i in inds: color_mask = np.random.randint( 0, 256, (1, 3), dtype=np.uint8) mask = maskUtils.decode(segms[i]).astype(np.bool) img_show[mask] = img_show[mask] * 0.5 + color_mask * 0.5 # draw bounding boxes labels = [ np.full(bbox.shape[0], i, dtype=np.int32) for i, bbox in enumerate(bbox_result) ] labels = np.concatenate(labels) mmcv.imshow_det_bboxes( img_show, bboxes, labels, class_names=class_names, score_thr=score_thr)