inference.py 5.83 KB
Newer Older
1
2
import warnings

Kai Chen's avatar
Kai Chen committed
3
import matplotlib.pyplot as plt
myownskyW7's avatar
myownskyW7 committed
4
5
import mmcv
import numpy as np
6
import pycocotools.mask as maskUtils
myownskyW7's avatar
myownskyW7 committed
7
import torch
8
from mmcv.parallel import collate, scatter
9
from mmcv.runner import load_checkpoint
myownskyW7's avatar
myownskyW7 committed
10

11
from mmdet.core import get_classes
12
from mmdet.datasets.pipelines import Compose
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
from mmdet.models import build_detector


def init_detector(config, checkpoint=None, device='cuda:0'):
    """Initialize a detector from config file.

    Args:
        config (str or :obj:`mmcv.Config`): Config file path or the config
            object.
        checkpoint (str, optional): Checkpoint path. If left as None, the model
            will not load any weights.

    Returns:
        nn.Module: The constructed detector.
    """
    if isinstance(config, str):
        config = mmcv.Config.fromfile(config)
    elif not isinstance(config, mmcv.Config):
        raise TypeError('config must be a filename or Config object, '
                        'but got {}'.format(type(config)))
    config.model.pretrained = None
    model = build_detector(config.model, test_cfg=config.test_cfg)
    if checkpoint is not None:
        checkpoint = load_checkpoint(model, checkpoint)
        if 'CLASSES' in checkpoint['meta']:
38
            model.CLASSES = checkpoint['meta']['CLASSES']
39
40
41
42
43
44
45
46
47
48
        else:
            warnings.warn('Class names are not saved in the checkpoint\'s '
                          'meta data, use COCO classes by default.')
            model.CLASSES = get_classes('coco')
    model.cfg = config  # save the config in the model for convenience
    model.to(device)
    model.eval()
    return model


49
50
51
class LoadImage(object):

    def __call__(self, results):
Kai Chen's avatar
Kai Chen committed
52
53
54
55
        if isinstance(results['img'], str):
            results['filename'] = results['img']
        else:
            results['filename'] = None
56
57
        img = mmcv.imread(results['img'])
        results['img'] = img
Kai Chen's avatar
Kai Chen committed
58
        results['img_shape'] = img.shape
59
60
61
62
63
        results['ori_shape'] = img.shape
        return results


def inference_detector(model, img):
64
65
66
67
68
69
70
71
72
73
74
75
76
    """Inference image(s) with the detector.

    Args:
        model (nn.Module): The loaded detector.
        imgs (str/ndarray or list[str/ndarray]): Either image files or loaded
            images.

    Returns:
        If imgs is a str, a generator will be returned, otherwise return the
        detection results directly.
    """
    cfg = model.cfg
    device = next(model.parameters()).device  # model device
77
78
79
80
81
82
83
84
    # build the data pipeline
    test_pipeline = [LoadImage()] + cfg.data.test.pipeline[1:]
    test_pipeline = Compose(test_pipeline)
    # prepare data
    data = dict(img=img)
    data = test_pipeline(data)
    data = scatter(collate([data], samples_per_gpu=1), [device])[0]
    # forward the model
Kai Chen's avatar
Kai Chen committed
85
86
87
    with torch.no_grad():
        result = model(return_loss=False, rescale=True, **data)

88
    return result
Kai Chen's avatar
Kai Chen committed
89

myownskyW7's avatar
myownskyW7 committed
90

91
# TODO: merge this method with the one in BaseDetector
simon wu's avatar
simon wu committed
92
93
94
95
96
def show_result(img,
                result,
                class_names,
                score_thr=0.3,
                wait_time=0,
Kai Chen's avatar
Kai Chen committed
97
                show=True,
simon wu's avatar
simon wu committed
98
                out_file=None):
99
    """Visualize the detection results on the image.
myownskyW7's avatar
myownskyW7 committed
100

101
102
103
104
105
106
    Args:
        img (str or np.ndarray): Image filename or loaded image.
        result (tuple[list] or list): The detection result, can be either
            (bbox, segm) or just bbox.
        class_names (list[str] or tuple[str]): A list of class names.
        score_thr (float): The threshold to visualize the bboxes and masks.
simon wu's avatar
simon wu committed
107
        wait_time (int): Value of waitKey param.
Kai Chen's avatar
Kai Chen committed
108
        show (bool, optional): Whether to show the image with opencv or not.
109
110
        out_file (str, optional): If specified, the visualization result will
            be written to the out file instead of shown in a window.
Kai Chen's avatar
Kai Chen committed
111
112
113
114

    Returns:
        np.ndarray or None: If neither `show` nor `out_file` is specified, the
            visualized image is returned, otherwise None is returned.
115
116
    """
    assert isinstance(class_names, (tuple, list))
117
    img = mmcv.imread(img)
Kai Chen's avatar
Kai Chen committed
118
    img = img.copy()
119
120
121
122
123
124
125
126
127
128
    if isinstance(result, tuple):
        bbox_result, segm_result = result
    else:
        bbox_result, segm_result = result, None
    bboxes = np.vstack(bbox_result)
    # draw segmentation masks
    if segm_result is not None:
        segms = mmcv.concat_list(segm_result)
        inds = np.where(bboxes[:, -1] > score_thr)[0]
        for i in inds:
129
            color_mask = np.random.randint(0, 256, (1, 3), dtype=np.uint8)
130
131
132
            mask = maskUtils.decode(segms[i]).astype(np.bool)
            img[mask] = img[mask] * 0.5 + color_mask * 0.5
    # draw bounding boxes
myownskyW7's avatar
myownskyW7 committed
133
134
    labels = [
        np.full(bbox.shape[0], i, dtype=np.int32)
135
        for i, bbox in enumerate(bbox_result)
myownskyW7's avatar
myownskyW7 committed
136
137
138
    ]
    labels = np.concatenate(labels)
    mmcv.imshow_det_bboxes(
Kai Chen's avatar
Kai Chen committed
139
        img,
myownskyW7's avatar
myownskyW7 committed
140
141
142
        bboxes,
        labels,
        class_names=class_names,
143
        score_thr=score_thr,
Kai Chen's avatar
Kai Chen committed
144
        show=show,
simon wu's avatar
simon wu committed
145
        wait_time=wait_time,
zhijl's avatar
zhijl committed
146
        out_file=out_file)
Kai Chen's avatar
Kai Chen committed
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
    if not (show or out_file):
        return img


def show_result_pyplot(img,
                       result,
                       class_names,
                       score_thr=0.3,
                       fig_size=(15, 10)):
    """Visualize the detection results on the image.

    Args:
        img (str or np.ndarray): Image filename or loaded image.
        result (tuple[list] or list): The detection result, can be either
            (bbox, segm) or just bbox.
        class_names (list[str] or tuple[str]): A list of class names.
        score_thr (float): The threshold to visualize the bboxes and masks.
        fig_size (tuple): Figure size of the pyplot figure.
        out_file (str, optional): If specified, the visualization result will
            be written to the out file instead of shown in a window.
    """
    img = show_result(
        img, result, class_names, score_thr=score_thr, show=False)
    plt.figure(figsize=fig_size)
    plt.imshow(mmcv.bgr2rgb(img))