train.py 4.04 KB
Newer Older
pangjm's avatar
pangjm committed
1
2
from __future__ import division
import argparse
lizz's avatar
lizz committed
3
import os
4
5
import os.path as osp
import time
6

7
import mmcv
8
import torch
pangjm's avatar
pangjm committed
9
from mmcv import Config
Kai Chen's avatar
Kai Chen committed
10
from mmcv.runner import init_dist
11

12
from mmdet import __version__
Kai Chen's avatar
Kai Chen committed
13
from mmdet.apis import set_random_seed, train_detector
14
from mmdet.datasets import build_dataset
myownskyW7's avatar
myownskyW7 committed
15
from mmdet.models import build_detector
Kai Chen's avatar
Kai Chen committed
16
from mmdet.utils import get_root_logger
Kai Chen's avatar
Kai Chen committed
17
18


pangjm's avatar
pangjm committed
19
def parse_args():
Kai Chen's avatar
Kai Chen committed
20
    parser = argparse.ArgumentParser(description='Train a detector')
pangjm's avatar
pangjm committed
21
    parser.add_argument('config', help='train config file path')
22
    parser.add_argument('--work_dir', help='the dir to save logs and models')
pangjm's avatar
pangjm committed
23
24
    parser.add_argument(
        '--resume_from', help='the checkpoint file to resume from')
pangjm's avatar
pangjm committed
25
    parser.add_argument(
Kai Chen's avatar
Kai Chen committed
26
27
        '--validate',
        action='store_true',
Kai Chen's avatar
Kai Chen committed
28
        help='whether to evaluate the checkpoint during training')
Kai Chen's avatar
Kai Chen committed
29
    parser.add_argument(
Kai Chen's avatar
Kai Chen committed
30
31
32
33
34
35
        '--gpus',
        type=int,
        default=1,
        help='number of gpus to use '
        '(only applicable to non-distributed training)')
    parser.add_argument('--seed', type=int, default=None, help='random seed')
Kai Chen's avatar
Kai Chen committed
36
37
38
39
    parser.add_argument(
        '--deterministic',
        action='store_true',
        help='whether to set deterministic options for CUDNN backend.')
40
41
42
43
44
45
    parser.add_argument(
        '--launcher',
        choices=['none', 'pytorch', 'slurm', 'mpi'],
        default='none',
        help='job launcher')
    parser.add_argument('--local_rank', type=int, default=0)
46
47
48
49
    parser.add_argument(
        '--autoscale-lr',
        action='store_true',
        help='automatically scale lr with the number of gpus')
pangjm's avatar
pangjm committed
50
    args = parser.parse_args()
lizz's avatar
lizz committed
51
52
    if 'LOCAL_RANK' not in os.environ:
        os.environ['LOCAL_RANK'] = str(args.local_rank)
pangjm's avatar
pangjm committed
53
54
55
56
57

    return args


def main():
58
    args = parse_args()
Kai Chen's avatar
Kai Chen committed
59

Kai Chen's avatar
Kai Chen committed
60
    cfg = Config.fromfile(args.config)
yhcao6's avatar
yhcao6 committed
61
62
    # set cudnn_benchmark
    if cfg.get('cudnn_benchmark', False):
63
        torch.backends.cudnn.benchmark = True
Kai Chen's avatar
Kai Chen committed
64
    # update configs according to CLI args
65
66
    if args.work_dir is not None:
        cfg.work_dir = args.work_dir
pangjm's avatar
pangjm committed
67
68
    if args.resume_from is not None:
        cfg.resume_from = args.resume_from
69
    cfg.gpus = args.gpus
Kai Chen's avatar
Kai Chen committed
70

71
72
73
74
    if args.autoscale_lr:
        # apply the linear scaling rule (https://arxiv.org/abs/1706.02677)
        cfg.optimizer['lr'] = cfg.optimizer['lr'] * cfg.gpus / 8

Kai Chen's avatar
Kai Chen committed
75
76
77
78
79
80
81
    # init distributed env first, since logger depends on the dist info.
    if args.launcher == 'none':
        distributed = False
    else:
        distributed = True
        init_dist(args.launcher, **cfg.dist_params)

82
83
84
85
86
87
88
89
    # create work_dir
    mmcv.mkdir_or_exist(osp.abspath(cfg.work_dir))
    # init the logger before other steps
    timestamp = time.strftime('%Y%m%d_%H%M%S', time.localtime())
    log_file = osp.join(cfg.work_dir, '{}.log'.format(timestamp))
    logger = get_root_logger(log_file=log_file, log_level=cfg.log_level)

    # log some basic info
Kai Chen's avatar
Kai Chen committed
90
    logger.info('Distributed training: {}'.format(distributed))
91
    logger.info('MMDetection Version: {}'.format(__version__))
92
    logger.info('Config:\n{}'.format(cfg.text))
Kai Chen's avatar
Kai Chen committed
93
94
95

    # set random seeds
    if args.seed is not None:
Kai Chen's avatar
Kai Chen committed
96
97
98
        logger.info('Set random seed to {}, deterministic: {}'.format(
            args.seed, args.deterministic))
        set_random_seed(args.seed, deterministic=args.deterministic)
Kai Chen's avatar
Kai Chen committed
99

Kai Chen's avatar
Kai Chen committed
100
101
    model = build_detector(
        cfg.model, train_cfg=cfg.train_cfg, test_cfg=cfg.test_cfg)
pangjm's avatar
pangjm committed
102

103
104
105
    datasets = [build_dataset(cfg.data.train)]
    if len(cfg.workflow) == 2:
        datasets.append(build_dataset(cfg.data.val))
106
107
108
109
    if cfg.checkpoint_config is not None:
        # save mmdet version, config file content and class names in
        # checkpoints as meta data
        cfg.checkpoint_config.meta = dict(
110
111
            mmdet_version=__version__,
            config=cfg.text,
112
            CLASSES=datasets[0].CLASSES)
113
    # add an attribute for visualization convenience
114
    model.CLASSES = datasets[0].CLASSES
Kai Chen's avatar
Kai Chen committed
115
116
    train_detector(
        model,
117
        datasets,
Kai Chen's avatar
Kai Chen committed
118
119
120
        cfg,
        distributed=distributed,
        validate=args.validate,
121
        timestamp=timestamp)
pangjm's avatar
pangjm committed
122
123


Kai Chen's avatar
Kai Chen committed
124
if __name__ == '__main__':
pangjm's avatar
pangjm committed
125
    main()