train.py 3.48 KB
Newer Older
pangjm's avatar
pangjm committed
1
2
from __future__ import division
import argparse
lizz's avatar
lizz committed
3
import os
4
5

import torch
pangjm's avatar
pangjm committed
6
from mmcv import Config
7

8
from mmdet import __version__
9
10
from mmdet.apis import (get_root_logger, init_dist, set_random_seed,
                        train_detector)
11
from mmdet.datasets import build_dataset
myownskyW7's avatar
myownskyW7 committed
12
from mmdet.models import build_detector
Kai Chen's avatar
Kai Chen committed
13
14


pangjm's avatar
pangjm committed
15
def parse_args():
Kai Chen's avatar
Kai Chen committed
16
    parser = argparse.ArgumentParser(description='Train a detector')
pangjm's avatar
pangjm committed
17
    parser.add_argument('config', help='train config file path')
18
    parser.add_argument('--work_dir', help='the dir to save logs and models')
pangjm's avatar
pangjm committed
19
20
    parser.add_argument(
        '--resume_from', help='the checkpoint file to resume from')
pangjm's avatar
pangjm committed
21
    parser.add_argument(
Kai Chen's avatar
Kai Chen committed
22
23
        '--validate',
        action='store_true',
Kai Chen's avatar
Kai Chen committed
24
        help='whether to evaluate the checkpoint during training')
Kai Chen's avatar
Kai Chen committed
25
    parser.add_argument(
Kai Chen's avatar
Kai Chen committed
26
27
28
29
30
31
        '--gpus',
        type=int,
        default=1,
        help='number of gpus to use '
        '(only applicable to non-distributed training)')
    parser.add_argument('--seed', type=int, default=None, help='random seed')
32
33
34
35
36
37
    parser.add_argument(
        '--launcher',
        choices=['none', 'pytorch', 'slurm', 'mpi'],
        default='none',
        help='job launcher')
    parser.add_argument('--local_rank', type=int, default=0)
38
39
40
41
    parser.add_argument(
        '--autoscale-lr',
        action='store_true',
        help='automatically scale lr with the number of gpus')
pangjm's avatar
pangjm committed
42
    args = parser.parse_args()
lizz's avatar
lizz committed
43
44
    if 'LOCAL_RANK' not in os.environ:
        os.environ['LOCAL_RANK'] = str(args.local_rank)
pangjm's avatar
pangjm committed
45
46
47
48
49

    return args


def main():
50
    args = parse_args()
Kai Chen's avatar
Kai Chen committed
51

Kai Chen's avatar
Kai Chen committed
52
    cfg = Config.fromfile(args.config)
yhcao6's avatar
yhcao6 committed
53
54
    # set cudnn_benchmark
    if cfg.get('cudnn_benchmark', False):
55
        torch.backends.cudnn.benchmark = True
Kai Chen's avatar
Kai Chen committed
56
    # update configs according to CLI args
57
58
    if args.work_dir is not None:
        cfg.work_dir = args.work_dir
pangjm's avatar
pangjm committed
59
60
    if args.resume_from is not None:
        cfg.resume_from = args.resume_from
61
    cfg.gpus = args.gpus
Kai Chen's avatar
Kai Chen committed
62

63
64
65
66
    if args.autoscale_lr:
        # apply the linear scaling rule (https://arxiv.org/abs/1706.02677)
        cfg.optimizer['lr'] = cfg.optimizer['lr'] * cfg.gpus / 8

Kai Chen's avatar
Kai Chen committed
67
68
69
70
71
72
73
74
75
76
    # init distributed env first, since logger depends on the dist info.
    if args.launcher == 'none':
        distributed = False
    else:
        distributed = True
        init_dist(args.launcher, **cfg.dist_params)

    # init logger before other steps
    logger = get_root_logger(cfg.log_level)
    logger.info('Distributed training: {}'.format(distributed))
77
78
    logger.info('MMDetection Version: {}'.format(__version__))
    logger.info('Config: {}'.format(cfg.text))
Kai Chen's avatar
Kai Chen committed
79
80
81
82
83
84

    # set random seeds
    if args.seed is not None:
        logger.info('Set random seed to {}'.format(args.seed))
        set_random_seed(args.seed)

Kai Chen's avatar
Kai Chen committed
85
86
    model = build_detector(
        cfg.model, train_cfg=cfg.train_cfg, test_cfg=cfg.test_cfg)
pangjm's avatar
pangjm committed
87

88
89
90
    datasets = [build_dataset(cfg.data.train)]
    if len(cfg.workflow) == 2:
        datasets.append(build_dataset(cfg.data.val))
91
92
93
94
    if cfg.checkpoint_config is not None:
        # save mmdet version, config file content and class names in
        # checkpoints as meta data
        cfg.checkpoint_config.meta = dict(
95
96
            mmdet_version=__version__,
            config=cfg.text,
97
            CLASSES=datasets[0].CLASSES)
98
    # add an attribute for visualization convenience
99
    model.CLASSES = datasets[0].CLASSES
Kai Chen's avatar
Kai Chen committed
100
101
    train_detector(
        model,
102
        datasets,
Kai Chen's avatar
Kai Chen committed
103
104
105
106
        cfg,
        distributed=distributed,
        validate=args.validate,
        logger=logger)
pangjm's avatar
pangjm committed
107
108


Kai Chen's avatar
Kai Chen committed
109
if __name__ == '__main__':
pangjm's avatar
pangjm committed
110
    main()