resnet.py 15 KB
Newer Older
1
2
import logging

Kai Chen's avatar
Kai Chen committed
3
4
import torch.nn as nn
import torch.utils.checkpoint as cp
Kai Chen's avatar
Kai Chen committed
5
6

from mmcv.cnn import constant_init, kaiming_init
Kai Chen's avatar
Kai Chen committed
7
from mmcv.runner import load_checkpoint
Kai Chen's avatar
Kai Chen committed
8
9
10

from mmdet.ops import DeformConv, ModulatedDeformConv
from ..registry import BACKBONES
11
from ..utils import build_conv_layer, build_norm_layer
Kai Chen's avatar
Kai Chen committed
12
13
14
15
16
17
18
19
20
21
22


class BasicBlock(nn.Module):
    expansion = 1

    def __init__(self,
                 inplanes,
                 planes,
                 stride=1,
                 dilation=1,
                 downsample=None,
Kai Chen's avatar
Kai Chen committed
23
                 style='pytorch',
24
                 with_cp=False,
25
                 conv_cfg=None,
pangjm's avatar
pangjm committed
26
27
                 normalize=dict(type='BN'),
                 dcn=None):
Kai Chen's avatar
Kai Chen committed
28
        super(BasicBlock, self).__init__()
pangjm's avatar
pangjm committed
29
        assert dcn is None, "Not implemented yet."
30

ThangVu's avatar
ThangVu committed
31
32
        self.norm1_name, norm1 = build_norm_layer(normalize, planes, postfix=1)
        self.norm2_name, norm2 = build_norm_layer(normalize, planes, postfix=2)
33

34
35
36
37
38
39
40
41
42
        self.conv1 = build_conv_layer(
            conv_cfg,
            inplanes,
            planes,
            3,
            stride=stride,
            padding=dilation,
            dilation=dilation,
            bias=False)
ThangVu's avatar
ThangVu committed
43
        self.add_module(self.norm1_name, norm1)
44
45
46
47
48
49
50
51
52
        self.conv2 = build_conv_layer(
            conv_cfg,
            planes,
            planes,
            3,
            stride=stride,
            padding=dilation,
            dilation=dilation,
            bias=False)
ThangVu's avatar
ThangVu committed
53
        self.add_module(self.norm2_name, norm2)
54

Kai Chen's avatar
Kai Chen committed
55
56
57
58
        self.relu = nn.ReLU(inplace=True)
        self.downsample = downsample
        self.stride = stride
        self.dilation = dilation
Kai Chen's avatar
Kai Chen committed
59
        assert not with_cp
Kai Chen's avatar
Kai Chen committed
60

ThangVu's avatar
ThangVu committed
61
62
63
64
65
66
67
68
    @property
    def norm1(self):
        return getattr(self, self.norm1_name)

    @property
    def norm2(self):
        return getattr(self, self.norm2_name)

Kai Chen's avatar
Kai Chen committed
69
    def forward(self, x):
pangjm's avatar
pangjm committed
70
        identity = x
Kai Chen's avatar
Kai Chen committed
71
72

        out = self.conv1(x)
ThangVu's avatar
ThangVu committed
73
        out = self.norm1(out)
Kai Chen's avatar
Kai Chen committed
74
75
76
        out = self.relu(out)

        out = self.conv2(out)
ThangVu's avatar
ThangVu committed
77
        out = self.norm2(out)
Kai Chen's avatar
Kai Chen committed
78
79

        if self.downsample is not None:
pangjm's avatar
pangjm committed
80
            identity = self.downsample(x)
Kai Chen's avatar
Kai Chen committed
81

pangjm's avatar
pangjm committed
82
        out += identity
Kai Chen's avatar
Kai Chen committed
83
84
85
86
87
88
89
90
91
92
93
94
95
96
        out = self.relu(out)

        return out


class Bottleneck(nn.Module):
    expansion = 4

    def __init__(self,
                 inplanes,
                 planes,
                 stride=1,
                 dilation=1,
                 downsample=None,
97
                 style='pytorch',
98
                 with_cp=False,
99
                 conv_cfg=None,
Kai Chen's avatar
Kai Chen committed
100
101
                 normalize=dict(type='BN'),
                 dcn=None):
pangjm's avatar
pangjm committed
102
        """Bottleneck block for ResNet.
103
104
        If style is "pytorch", the stride-two layer is the 3x3 conv layer,
        if it is "caffe", the stride-two layer is the first 1x1 conv layer.
Kai Chen's avatar
Kai Chen committed
105
106
        """
        super(Bottleneck, self).__init__()
107
        assert style in ['pytorch', 'caffe']
Kai Chen's avatar
Kai Chen committed
108
        assert dcn is None or isinstance(dcn, dict)
pangjm's avatar
pangjm committed
109
110
        self.inplanes = inplanes
        self.planes = planes
111
        self.conv_cfg = conv_cfg
ThangVu's avatar
ThangVu committed
112
        self.normalize = normalize
Kai Chen's avatar
Kai Chen committed
113
114
        self.dcn = dcn
        self.with_dcn = dcn is not None
115
        if style == 'pytorch':
pangjm's avatar
pangjm committed
116
117
            self.conv1_stride = 1
            self.conv2_stride = stride
Kai Chen's avatar
Kai Chen committed
118
        else:
pangjm's avatar
pangjm committed
119
120
            self.conv1_stride = stride
            self.conv2_stride = 1
121
122
123

        self.norm1_name, norm1 = build_norm_layer(normalize, planes, postfix=1)
        self.norm2_name, norm2 = build_norm_layer(normalize, planes, postfix=2)
Kai Chen's avatar
Kai Chen committed
124
125
        self.norm3_name, norm3 = build_norm_layer(
            normalize, planes * self.expansion, postfix=3)
126

127
128
        self.conv1 = build_conv_layer(
            conv_cfg,
pangjm's avatar
pangjm committed
129
130
131
132
133
            inplanes,
            planes,
            kernel_size=1,
            stride=self.conv1_stride,
            bias=False)
134
        self.add_module(self.norm1_name, norm1)
Kai Chen's avatar
Kai Chen committed
135
136
137
138
139
140
        fallback_on_stride = False
        self.with_modulated_dcn = False
        if self.with_dcn:
            fallback_on_stride = dcn.get('fallback_on_stride', False)
            self.with_modulated_dcn = dcn.get('modulated', False)
        if not self.with_dcn or fallback_on_stride:
141
142
            self.conv2 = build_conv_layer(
                conv_cfg,
Kai Chen's avatar
Kai Chen committed
143
144
145
146
147
148
149
150
                planes,
                planes,
                kernel_size=3,
                stride=self.conv2_stride,
                padding=dilation,
                dilation=dilation,
                bias=False)
        else:
151
            assert conv_cfg is None, 'conv_cfg must be None for DCN'
Kai Chen's avatar
Kai Chen committed
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
            deformable_groups = dcn.get('deformable_groups', 1)
            if not self.with_modulated_dcn:
                conv_op = DeformConv
                offset_channels = 18
            else:
                conv_op = ModulatedDeformConv
                offset_channels = 27
            self.conv2_offset = nn.Conv2d(
                planes,
                deformable_groups * offset_channels,
                kernel_size=3,
                stride=self.conv2_stride,
                padding=dilation,
                dilation=dilation)
            self.conv2 = conv_op(
                planes,
                planes,
                kernel_size=3,
                stride=self.conv2_stride,
                padding=dilation,
                dilation=dilation,
                deformable_groups=deformable_groups,
                bias=False)
ThangVu's avatar
ThangVu committed
175
        self.add_module(self.norm2_name, norm2)
176
177
178
179
180
181
        self.conv3 = build_conv_layer(
            conv_cfg,
            planes,
            planes * self.expansion,
            kernel_size=1,
            bias=False)
182
183
        self.add_module(self.norm3_name, norm3)

Kai Chen's avatar
Kai Chen committed
184
185
186
187
188
        self.relu = nn.ReLU(inplace=True)
        self.downsample = downsample
        self.stride = stride
        self.dilation = dilation
        self.with_cp = with_cp
189
        self.normalize = normalize
Kai Chen's avatar
Kai Chen committed
190

ThangVu's avatar
ThangVu committed
191
192
193
194
195
196
197
198
199
200
201
202
    @property
    def norm1(self):
        return getattr(self, self.norm1_name)

    @property
    def norm2(self):
        return getattr(self, self.norm2_name)

    @property
    def norm3(self):
        return getattr(self, self.norm3_name)

Kai Chen's avatar
Kai Chen committed
203
204
205
    def forward(self, x):

        def _inner_forward(x):
pangjm's avatar
pangjm committed
206
            identity = x
Kai Chen's avatar
Kai Chen committed
207
208

            out = self.conv1(x)
ThangVu's avatar
ThangVu committed
209
            out = self.norm1(out)
Kai Chen's avatar
Kai Chen committed
210
211
            out = self.relu(out)

Kai Chen's avatar
Kai Chen committed
212
213
214
215
216
217
218
219
220
221
            if not self.with_dcn:
                out = self.conv2(out)
            elif self.with_modulated_dcn:
                offset_mask = self.conv2_offset(out)
                offset = offset_mask[:, :18, :, :]
                mask = offset_mask[:, -9:, :, :].sigmoid()
                out = self.conv2(out, offset, mask)
            else:
                offset = self.conv2_offset(out)
                out = self.conv2(out, offset)
ThangVu's avatar
ThangVu committed
222
            out = self.norm2(out)
Kai Chen's avatar
Kai Chen committed
223
224
225
            out = self.relu(out)

            out = self.conv3(out)
ThangVu's avatar
ThangVu committed
226
            out = self.norm3(out)
Kai Chen's avatar
Kai Chen committed
227
228

            if self.downsample is not None:
pangjm's avatar
pangjm committed
229
                identity = self.downsample(x)
Kai Chen's avatar
Kai Chen committed
230

pangjm's avatar
pangjm committed
231
            out += identity
Kai Chen's avatar
Kai Chen committed
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250

            return out

        if self.with_cp and x.requires_grad:
            out = cp.checkpoint(_inner_forward, x)
        else:
            out = _inner_forward(x)

        out = self.relu(out)

        return out


def make_res_layer(block,
                   inplanes,
                   planes,
                   blocks,
                   stride=1,
                   dilation=1,
251
                   style='pytorch',
252
                   with_cp=False,
253
                   conv_cfg=None,
Kai Chen's avatar
Kai Chen committed
254
255
                   normalize=dict(type='BN'),
                   dcn=None):
Kai Chen's avatar
Kai Chen committed
256
257
258
    downsample = None
    if stride != 1 or inplanes != planes * block.expansion:
        downsample = nn.Sequential(
259
260
            build_conv_layer(
                conv_cfg,
Kai Chen's avatar
Kai Chen committed
261
262
263
264
265
                inplanes,
                planes * block.expansion,
                kernel_size=1,
                stride=stride,
                bias=False),
ThangVu's avatar
ThangVu committed
266
            build_norm_layer(normalize, planes * block.expansion)[1],
Kai Chen's avatar
Kai Chen committed
267
268
269
270
271
272
273
274
275
276
277
        )

    layers = []
    layers.append(
        block(
            inplanes,
            planes,
            stride,
            dilation,
            downsample,
            style=style,
278
            with_cp=with_cp,
279
            conv_cfg=conv_cfg,
Kai Chen's avatar
Kai Chen committed
280
281
            normalize=normalize,
            dcn=dcn))
Kai Chen's avatar
Kai Chen committed
282
283
284
    inplanes = planes * block.expansion
    for i in range(1, blocks):
        layers.append(
Kai Chen's avatar
Kai Chen committed
285
286
287
288
289
290
291
            block(
                inplanes,
                planes,
                1,
                dilation,
                style=style,
                with_cp=with_cp,
292
                conv_cfg=conv_cfg,
Kai Chen's avatar
Kai Chen committed
293
294
                normalize=normalize,
                dcn=dcn))
Kai Chen's avatar
Kai Chen committed
295
296
297
298

    return nn.Sequential(*layers)


Kai Chen's avatar
Kai Chen committed
299
@BACKBONES.register_module
Kai Chen's avatar
Kai Chen committed
300
301
class ResNet(nn.Module):
    """ResNet backbone.
Kai Chen's avatar
Kai Chen committed
302

Kai Chen's avatar
Kai Chen committed
303
304
305
306
307
308
309
310
311
312
313
    Args:
        depth (int): Depth of resnet, from {18, 34, 50, 101, 152}.
        num_stages (int): Resnet stages, normally 4.
        strides (Sequence[int]): Strides of the first block of each stage.
        dilations (Sequence[int]): Dilation of each stage.
        out_indices (Sequence[int]): Output from which stages.
        style (str): `pytorch` or `caffe`. If set to "pytorch", the stride-two
            layer is the 3x3 conv layer, otherwise the stride-two layer is
            the first 1x1 conv layer.
        frozen_stages (int): Stages to be frozen (all param fixed). -1 means
            not freezing any parameters.
thangvu's avatar
thangvu committed
314
315
316
317
        normalize (dict): dictionary to construct and config norm layer.
        norm_eval (bool): Whether to set norm layers to eval mode, namely,
            freeze running stats (mean and var). Note: Effect on Batch Norm
            and its variants only.
Kai Chen's avatar
Kai Chen committed
318
319
        with_cp (bool): Use checkpoint or not. Using checkpoint will save some
            memory while slowing down the training speed.
thangvu's avatar
thangvu committed
320
321
        zero_init_residual (bool): whether to use zero init for last norm layer
            in resblocks to let them behave as identity.
Kai Chen's avatar
Kai Chen committed
322
    """
Kai Chen's avatar
Kai Chen committed
323

Kai Chen's avatar
Kai Chen committed
324
325
326
327
328
329
330
    arch_settings = {
        18: (BasicBlock, (2, 2, 2, 2)),
        34: (BasicBlock, (3, 4, 6, 3)),
        50: (Bottleneck, (3, 4, 6, 3)),
        101: (Bottleneck, (3, 4, 23, 3)),
        152: (Bottleneck, (3, 8, 36, 3))
    }
Kai Chen's avatar
Kai Chen committed
331
332

    def __init__(self,
Kai Chen's avatar
Kai Chen committed
333
334
                 depth,
                 num_stages=4,
Kai Chen's avatar
Kai Chen committed
335
336
337
                 strides=(1, 2, 2, 2),
                 dilations=(1, 1, 1, 1),
                 out_indices=(0, 1, 2, 3),
338
                 style='pytorch',
ThangVu's avatar
ThangVu committed
339
                 frozen_stages=-1,
340
                 conv_cfg=None,
Kai Chen's avatar
Kai Chen committed
341
                 normalize=dict(type='BN', frozen=False),
thangvu's avatar
thangvu committed
342
                 norm_eval=True,
Kai Chen's avatar
Kai Chen committed
343
344
                 dcn=None,
                 stage_with_dcn=(False, False, False, False),
ThangVu's avatar
ThangVu committed
345
346
                 with_cp=False,
                 zero_init_residual=True):
Kai Chen's avatar
Kai Chen committed
347
        super(ResNet, self).__init__()
Kai Chen's avatar
Kai Chen committed
348
349
        if depth not in self.arch_settings:
            raise KeyError('invalid depth {} for resnet'.format(depth))
pangjm's avatar
pangjm committed
350
351
        self.depth = depth
        self.num_stages = num_stages
Kai Chen's avatar
Kai Chen committed
352
        assert num_stages >= 1 and num_stages <= 4
pangjm's avatar
pangjm committed
353
354
        self.strides = strides
        self.dilations = dilations
Kai Chen's avatar
Kai Chen committed
355
        assert len(strides) == len(dilations) == num_stages
Kai Chen's avatar
Kai Chen committed
356
        self.out_indices = out_indices
pangjm's avatar
pangjm committed
357
        assert max(out_indices) < num_stages
Kai Chen's avatar
Kai Chen committed
358
        self.style = style
ThangVu's avatar
ThangVu committed
359
        self.frozen_stages = frozen_stages
360
        self.conv_cfg = conv_cfg
361
        self.normalize = normalize
ThangVu's avatar
ThangVu committed
362
        self.with_cp = with_cp
thangvu's avatar
thangvu committed
363
        self.norm_eval = norm_eval
Kai Chen's avatar
Kai Chen committed
364
365
        self.dcn = dcn
        self.stage_with_dcn = stage_with_dcn
Kai Chen's avatar
Kai Chen committed
366
367
        if dcn is not None:
            assert len(stage_with_dcn) == num_stages
ThangVu's avatar
ThangVu committed
368
        self.zero_init_residual = zero_init_residual
pangjm's avatar
pangjm committed
369
370
        self.block, stage_blocks = self.arch_settings[depth]
        self.stage_blocks = stage_blocks[:num_stages]
Kai Chen's avatar
Kai Chen committed
371
        self.inplanes = 64
pangjm's avatar
pangjm committed
372

thangvu's avatar
thangvu committed
373
        self._make_stem_layer()
Kai Chen's avatar
Kai Chen committed
374

Kai Chen's avatar
Kai Chen committed
375
        self.res_layers = []
pangjm's avatar
pangjm committed
376
        for i, num_blocks in enumerate(self.stage_blocks):
Kai Chen's avatar
Kai Chen committed
377
378
            stride = strides[i]
            dilation = dilations[i]
Kai Chen's avatar
Kai Chen committed
379
            dcn = self.dcn if self.stage_with_dcn[i] else None
Kai Chen's avatar
Kai Chen committed
380
381
            planes = 64 * 2**i
            res_layer = make_res_layer(
pangjm's avatar
pangjm committed
382
                self.block,
Kai Chen's avatar
Kai Chen committed
383
384
385
386
387
388
                self.inplanes,
                planes,
                num_blocks,
                stride=stride,
                dilation=dilation,
                style=self.style,
389
                with_cp=with_cp,
390
                conv_cfg=conv_cfg,
Kai Chen's avatar
Kai Chen committed
391
392
                normalize=normalize,
                dcn=dcn)
pangjm's avatar
pangjm committed
393
            self.inplanes = planes * self.block.expansion
Kai Chen's avatar
Kai Chen committed
394
            layer_name = 'layer{}'.format(i + 1)
395
            self.add_module(layer_name, res_layer)
Kai Chen's avatar
Kai Chen committed
396
397
            self.res_layers.append(layer_name)

ThangVu's avatar
ThangVu committed
398
399
        self._freeze_stages()

pangjm's avatar
pangjm committed
400
401
        self.feat_dim = self.block.expansion * 64 * 2**(
            len(self.stage_blocks) - 1)
pangjm's avatar
pangjm committed
402

ThangVu's avatar
ThangVu committed
403
404
405
406
    @property
    def norm1(self):
        return getattr(self, self.norm1_name)

thangvu's avatar
thangvu committed
407
    def _make_stem_layer(self):
408
409
410
411
412
413
414
415
        self.conv1 = build_conv_layer(
            self.conv_cfg,
            3,
            64,
            kernel_size=7,
            stride=2,
            padding=3,
            bias=False)
Kai Chen's avatar
Kai Chen committed
416
417
        self.norm1_name, norm1 = build_norm_layer(
            self.normalize, 64, postfix=1)
ThangVu's avatar
ThangVu committed
418
        self.add_module(self.norm1_name, norm1)
thangvu's avatar
thangvu committed
419
420
421
        self.relu = nn.ReLU(inplace=True)
        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)

ThangVu's avatar
ThangVu committed
422
    def _freeze_stages(self):
ThangVu's avatar
ThangVu committed
423
        if self.frozen_stages >= 0:
ThangVu's avatar
ThangVu committed
424
            for m in [self.conv1, self.norm1]:
ThangVu's avatar
ThangVu committed
425
                for param in m.parameters():
thangvu's avatar
thangvu committed
426
427
                    param.requires_grad = False

ThangVu's avatar
ThangVu committed
428
429
430
431
432
        for i in range(1, self.frozen_stages + 1):
            m = getattr(self, 'layer{}'.format(i))
            for param in m.parameters():
                param.requires_grad = False

Kai Chen's avatar
Kai Chen committed
433
434
    def init_weights(self, pretrained=None):
        if isinstance(pretrained, str):
435
436
            logger = logging.getLogger()
            load_checkpoint(self, pretrained, strict=False, logger=logger)
Kai Chen's avatar
Kai Chen committed
437
438
439
        elif pretrained is None:
            for m in self.modules():
                if isinstance(m, nn.Conv2d):
Kai Chen's avatar
Kai Chen committed
440
                    kaiming_init(m)
ThangVu's avatar
minor  
ThangVu committed
441
                elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):
Kai Chen's avatar
Kai Chen committed
442
                    constant_init(m, 1)
443

Kai Chen's avatar
Kai Chen committed
444
445
446
447
448
449
            if self.dcn is not None:
                for m in self.modules():
                    if isinstance(m, Bottleneck) and hasattr(
                            m, 'conv2_offset'):
                        constant_init(m.conv2_offset, 0)

ThangVu's avatar
ThangVu committed
450
451
            if self.zero_init_residual:
                for m in self.modules():
ThangVu's avatar
ThangVu committed
452
453
454
455
                    if isinstance(m, Bottleneck):
                        constant_init(m.norm3, 0)
                    elif isinstance(m, BasicBlock):
                        constant_init(m.norm2, 0)
Kai Chen's avatar
Kai Chen committed
456
457
458
459
460
        else:
            raise TypeError('pretrained must be a str or None')

    def forward(self, x):
        x = self.conv1(x)
ThangVu's avatar
ThangVu committed
461
        x = self.norm1(x)
Kai Chen's avatar
Kai Chen committed
462
463
464
465
466
467
468
469
        x = self.relu(x)
        x = self.maxpool(x)
        outs = []
        for i, layer_name in enumerate(self.res_layers):
            res_layer = getattr(self, layer_name)
            x = res_layer(x)
            if i in self.out_indices:
                outs.append(x)
myownskyW7's avatar
myownskyW7 committed
470
        return tuple(outs)
Kai Chen's avatar
Kai Chen committed
471
472
473

    def train(self, mode=True):
        super(ResNet, self).train(mode)
thangvu's avatar
thangvu committed
474
        if mode and self.norm_eval:
ThangVu's avatar
ThangVu committed
475
            for m in self.modules():
thangvu's avatar
thangvu committed
476
                # trick: eval have effect on BatchNorm only
ThangVu's avatar
ThangVu committed
477
478
                if isinstance(m, nn.BatchNorm2d):
                    m.eval()