resnet.py 9.83 KB
Newer Older
1
2
import logging

Kai Chen's avatar
Kai Chen committed
3
4
import torch.nn as nn
import torch.utils.checkpoint as cp
Kai Chen's avatar
Kai Chen committed
5
6

from mmcv.cnn import constant_init, kaiming_init
Kai Chen's avatar
Kai Chen committed
7
from mmcv.runner import load_checkpoint
Kai Chen's avatar
Kai Chen committed
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30


def conv3x3(in_planes, out_planes, stride=1, dilation=1):
    "3x3 convolution with padding"
    return nn.Conv2d(
        in_planes,
        out_planes,
        kernel_size=3,
        stride=stride,
        padding=dilation,
        dilation=dilation,
        bias=False)


class BasicBlock(nn.Module):
    expansion = 1

    def __init__(self,
                 inplanes,
                 planes,
                 stride=1,
                 dilation=1,
                 downsample=None,
Kai Chen's avatar
Kai Chen committed
31
32
                 style='pytorch',
                 with_cp=False):
Kai Chen's avatar
Kai Chen committed
33
34
35
36
37
38
39
40
41
        super(BasicBlock, self).__init__()
        self.conv1 = conv3x3(inplanes, planes, stride, dilation)
        self.bn1 = nn.BatchNorm2d(planes)
        self.relu = nn.ReLU(inplace=True)
        self.conv2 = conv3x3(planes, planes)
        self.bn2 = nn.BatchNorm2d(planes)
        self.downsample = downsample
        self.stride = stride
        self.dilation = dilation
Kai Chen's avatar
Kai Chen committed
42
        assert not with_cp
Kai Chen's avatar
Kai Chen committed
43
44

    def forward(self, x):
pangjm's avatar
pangjm committed
45
        identity = x
Kai Chen's avatar
Kai Chen committed
46
47
48
49
50
51
52
53
54

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)

        if self.downsample is not None:
pangjm's avatar
pangjm committed
55
            identity = self.downsample(x)
Kai Chen's avatar
Kai Chen committed
56

pangjm's avatar
pangjm committed
57
        out += identity
Kai Chen's avatar
Kai Chen committed
58
59
60
61
62
63
64
65
66
67
68
69
70
71
        out = self.relu(out)

        return out


class Bottleneck(nn.Module):
    expansion = 4

    def __init__(self,
                 inplanes,
                 planes,
                 stride=1,
                 dilation=1,
                 downsample=None,
72
                 style='pytorch',
Kai Chen's avatar
Kai Chen committed
73
                 with_cp=False):
pangjm's avatar
pangjm committed
74
        """Bottleneck block for ResNet.
75
76
        If style is "pytorch", the stride-two layer is the 3x3 conv layer,
        if it is "caffe", the stride-two layer is the first 1x1 conv layer.
Kai Chen's avatar
Kai Chen committed
77
78
        """
        super(Bottleneck, self).__init__()
79
80
        assert style in ['pytorch', 'caffe']
        if style == 'pytorch':
Kai Chen's avatar
Kai Chen committed
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
            conv1_stride = 1
            conv2_stride = stride
        else:
            conv1_stride = stride
            conv2_stride = 1
        self.conv1 = nn.Conv2d(
            inplanes, planes, kernel_size=1, stride=conv1_stride, bias=False)
        self.conv2 = nn.Conv2d(
            planes,
            planes,
            kernel_size=3,
            stride=conv2_stride,
            padding=dilation,
            dilation=dilation,
            bias=False)

        self.bn1 = nn.BatchNorm2d(planes)
        self.bn2 = nn.BatchNorm2d(planes)
        self.conv3 = nn.Conv2d(
            planes, planes * self.expansion, kernel_size=1, bias=False)
        self.bn3 = nn.BatchNorm2d(planes * self.expansion)
        self.relu = nn.ReLU(inplace=True)
        self.downsample = downsample
        self.stride = stride
        self.dilation = dilation
        self.with_cp = with_cp

    def forward(self, x):

        def _inner_forward(x):
pangjm's avatar
pangjm committed
111
            identity = x
Kai Chen's avatar
Kai Chen committed
112
113
114
115
116
117
118
119
120
121
122
123
124

            out = self.conv1(x)
            out = self.bn1(out)
            out = self.relu(out)

            out = self.conv2(out)
            out = self.bn2(out)
            out = self.relu(out)

            out = self.conv3(out)
            out = self.bn3(out)

            if self.downsample is not None:
pangjm's avatar
pangjm committed
125
                identity = self.downsample(x)
Kai Chen's avatar
Kai Chen committed
126

pangjm's avatar
pangjm committed
127
            out += identity
Kai Chen's avatar
Kai Chen committed
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146

            return out

        if self.with_cp and x.requires_grad:
            out = cp.checkpoint(_inner_forward, x)
        else:
            out = _inner_forward(x)

        out = self.relu(out)

        return out


def make_res_layer(block,
                   inplanes,
                   planes,
                   blocks,
                   stride=1,
                   dilation=1,
147
                   style='pytorch',
Kai Chen's avatar
Kai Chen committed
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
                   with_cp=False):
    downsample = None
    if stride != 1 or inplanes != planes * block.expansion:
        downsample = nn.Sequential(
            nn.Conv2d(
                inplanes,
                planes * block.expansion,
                kernel_size=1,
                stride=stride,
                bias=False),
            nn.BatchNorm2d(planes * block.expansion),
        )

    layers = []
    layers.append(
        block(
            inplanes,
            planes,
            stride,
            dilation,
            downsample,
            style=style,
            with_cp=with_cp))
    inplanes = planes * block.expansion
    for i in range(1, blocks):
        layers.append(
            block(inplanes, planes, 1, dilation, style=style, with_cp=with_cp))

    return nn.Sequential(*layers)


Kai Chen's avatar
Kai Chen committed
179
180
class ResNet(nn.Module):
    """ResNet backbone.
Kai Chen's avatar
Kai Chen committed
181

Kai Chen's avatar
Kai Chen committed
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
    Args:
        depth (int): Depth of resnet, from {18, 34, 50, 101, 152}.
        num_stages (int): Resnet stages, normally 4.
        strides (Sequence[int]): Strides of the first block of each stage.
        dilations (Sequence[int]): Dilation of each stage.
        out_indices (Sequence[int]): Output from which stages.
        style (str): `pytorch` or `caffe`. If set to "pytorch", the stride-two
            layer is the 3x3 conv layer, otherwise the stride-two layer is
            the first 1x1 conv layer.
        frozen_stages (int): Stages to be frozen (all param fixed). -1 means
            not freezing any parameters.
        bn_eval (bool): Whether to set BN layers to eval mode, namely, freeze
            running stats (mean and var).
        bn_frozen (bool): Whether to freeze weight and bias of BN layers.
        with_cp (bool): Use checkpoint or not. Using checkpoint will save some
            memory while slowing down the training speed.
    """
Kai Chen's avatar
Kai Chen committed
199

Kai Chen's avatar
Kai Chen committed
200
201
202
203
204
205
206
    arch_settings = {
        18: (BasicBlock, (2, 2, 2, 2)),
        34: (BasicBlock, (3, 4, 6, 3)),
        50: (Bottleneck, (3, 4, 6, 3)),
        101: (Bottleneck, (3, 4, 23, 3)),
        152: (Bottleneck, (3, 8, 36, 3))
    }
Kai Chen's avatar
Kai Chen committed
207
208

    def __init__(self,
Kai Chen's avatar
Kai Chen committed
209
210
                 depth,
                 num_stages=4,
Kai Chen's avatar
Kai Chen committed
211
212
213
                 strides=(1, 2, 2, 2),
                 dilations=(1, 1, 1, 1),
                 out_indices=(0, 1, 2, 3),
214
                 style='pytorch',
Kai Chen's avatar
Kai Chen committed
215
216
217
218
                 frozen_stages=-1,
                 bn_eval=True,
                 bn_frozen=False,
                 with_cp=False):
Kai Chen's avatar
Kai Chen committed
219
        super(ResNet, self).__init__()
Kai Chen's avatar
Kai Chen committed
220
221
        if depth not in self.arch_settings:
            raise KeyError('invalid depth {} for resnet'.format(depth))
pangjm's avatar
pangjm committed
222
223
        self.depth = depth
        self.num_stages = num_stages
Kai Chen's avatar
Kai Chen committed
224
        assert num_stages >= 1 and num_stages <= 4
pangjm's avatar
pangjm committed
225
226
        self.strides = strides
        self.dilations = dilations
Kai Chen's avatar
Kai Chen committed
227
        assert len(strides) == len(dilations) == num_stages
Kai Chen's avatar
Kai Chen committed
228
        self.out_indices = out_indices
pangjm's avatar
pangjm committed
229
        assert max(out_indices) < num_stages
Kai Chen's avatar
Kai Chen committed
230
        self.style = style
Kai Chen's avatar
Kai Chen committed
231
232
233
234
235
        self.frozen_stages = frozen_stages
        self.bn_eval = bn_eval
        self.bn_frozen = bn_frozen
        self.with_cp = with_cp

pangjm's avatar
pangjm committed
236
237
        self.block, stage_blocks = self.arch_settings[depth]
        self.stage_blocks = stage_blocks[:num_stages]
Kai Chen's avatar
Kai Chen committed
238
        self.inplanes = 64
pangjm's avatar
pangjm committed
239

Kai Chen's avatar
Kai Chen committed
240
241
242
243
244
245
        self.conv1 = nn.Conv2d(
            3, 64, kernel_size=7, stride=2, padding=3, bias=False)
        self.bn1 = nn.BatchNorm2d(64)
        self.relu = nn.ReLU(inplace=True)
        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)

Kai Chen's avatar
Kai Chen committed
246
        self.res_layers = []
pangjm's avatar
pangjm committed
247
        for i, num_blocks in enumerate(self.stage_blocks):
Kai Chen's avatar
Kai Chen committed
248
249
250
251
            stride = strides[i]
            dilation = dilations[i]
            planes = 64 * 2**i
            res_layer = make_res_layer(
pangjm's avatar
pangjm committed
252
                self.block,
Kai Chen's avatar
Kai Chen committed
253
254
255
256
257
258
259
                self.inplanes,
                planes,
                num_blocks,
                stride=stride,
                dilation=dilation,
                style=self.style,
                with_cp=with_cp)
pangjm's avatar
pangjm committed
260
            self.inplanes = planes * self.block.expansion
Kai Chen's avatar
Kai Chen committed
261
            layer_name = 'layer{}'.format(i + 1)
262
            self.add_module(layer_name, res_layer)
Kai Chen's avatar
Kai Chen committed
263
264
            self.res_layers.append(layer_name)

pangjm's avatar
pangjm committed
265
266
        self.feat_dim = self.block.expansion * 64 * 2**(
            len(self.stage_blocks) - 1)
pangjm's avatar
pangjm committed
267

Kai Chen's avatar
Kai Chen committed
268
269
    def init_weights(self, pretrained=None):
        if isinstance(pretrained, str):
270
271
            logger = logging.getLogger()
            load_checkpoint(self, pretrained, strict=False, logger=logger)
Kai Chen's avatar
Kai Chen committed
272
273
274
        elif pretrained is None:
            for m in self.modules():
                if isinstance(m, nn.Conv2d):
Kai Chen's avatar
Kai Chen committed
275
                    kaiming_init(m)
Kai Chen's avatar
Kai Chen committed
276
                elif isinstance(m, nn.BatchNorm2d):
Kai Chen's avatar
Kai Chen committed
277
                    constant_init(m, 1)
Kai Chen's avatar
Kai Chen committed
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
        else:
            raise TypeError('pretrained must be a str or None')

    def forward(self, x):
        x = self.conv1(x)
        x = self.bn1(x)
        x = self.relu(x)
        x = self.maxpool(x)
        outs = []
        for i, layer_name in enumerate(self.res_layers):
            res_layer = getattr(self, layer_name)
            x = res_layer(x)
            if i in self.out_indices:
                outs.append(x)
        if len(outs) == 1:
            return outs[0]
        else:
            return tuple(outs)

    def train(self, mode=True):
        super(ResNet, self).train(mode)
Kai Chen's avatar
Kai Chen committed
299
        if self.bn_eval:
Kai Chen's avatar
Kai Chen committed
300
301
302
            for m in self.modules():
                if isinstance(m, nn.BatchNorm2d):
                    m.eval()
Kai Chen's avatar
Kai Chen committed
303
                    if self.bn_frozen:
pangjm's avatar
pangjm committed
304
305
                        for params in m.parameters():
                            params.requires_grad = False
Kai Chen's avatar
Kai Chen committed
306
307
308
309
310
311
312
313
314
315
316
317
318
        if mode and self.frozen_stages >= 0:
            for param in self.conv1.parameters():
                param.requires_grad = False
            for param in self.bn1.parameters():
                param.requires_grad = False
            self.bn1.eval()
            self.bn1.weight.requires_grad = False
            self.bn1.bias.requires_grad = False
            for i in range(1, self.frozen_stages + 1):
                mod = getattr(self, 'layer{}'.format(i))
                mod.eval()
                for param in mod.parameters():
                    param.requires_grad = False