Commit 8262d461 authored by Kai Chen's avatar Kai Chen
Browse files

adapt to mmcv api changes

parent 830effcd
......@@ -6,7 +6,7 @@ import time
import mmcv
import numpy as np
import torch
from mmcv.torchpack import Hook, obj_from_dict
from mmcv.runner import Hook, obj_from_dict
from pycocotools.cocoeval import COCOeval
from torch.utils.data import Dataset
......
......@@ -6,7 +6,7 @@ import torch.multiprocessing as mp
import torch.distributed as dist
from torch._utils import _flatten_dense_tensors, _unflatten_dense_tensors
from torch.nn.utils import clip_grad
from mmcv.torchpack import Hook, OptimizerHook
from mmcv.runner import Hook, OptimizerHook
def init_dist(launcher, backend='nccl', **kwargs):
......
import torch
from mmcv.torchpack import Hook
from mmcv.runner import Hook
class EmptyCacheHook(Hook):
......
......@@ -12,7 +12,8 @@ def tensor2imgs(tensor, mean=(0, 0, 0), std=(1, 1, 1), to_rgb=True):
imgs = []
for img_id in range(num_imgs):
img = tensor[img_id, ...].cpu().numpy().transpose(1, 2, 0)
img = mmcv.imdenorm(img, mean, std, to_bgr=to_rgb).astype(np.uint8)
img = mmcv.imdenormalize(
img, mean, std, to_bgr=to_rgb).astype(np.uint8)
imgs.append(np.ascontiguousarray(img))
return imgs
......
from functools import partial
from mmcv.torchpack import get_dist_info
from mmcv.runner import get_dist_info
from torch.utils.data import DataLoader
from .collate import collate
......
......@@ -31,7 +31,7 @@ class ImageTransform(object):
def __call__(self, img, scale, flip=False):
img, scale_factor = mmcv.imrescale(img, scale, return_scale=True)
img_shape = img.shape
img = mmcv.imnorm(img, self.mean, self.std, self.to_rgb)
img = mmcv.imnormalize(img, self.mean, self.std, self.to_rgb)
if flip:
img = mmcv.imflip(img)
if self.size_divisor is not None:
......
......@@ -3,7 +3,7 @@ import math
import torch.nn as nn
import torch.utils.checkpoint as cp
from mmcv.torchpack import load_checkpoint
from mmcv.runner import load_checkpoint
def conv3x3(in_planes, out_planes, stride=1, dilation=1):
......
from mmcv import torchpack as tp
from mmcv.runner import obj_from_dict
from torch import nn
from . import (backbones, necks, roi_extractors, rpn_heads, bbox_heads,
......@@ -11,7 +11,7 @@ __all__ = [
def _build_module(cfg, parrent=None, default_args=None):
return cfg if isinstance(cfg, nn.Module) else tp.obj_from_dict(
return cfg if isinstance(cfg, nn.Module) else obj_from_dict(
cfg, parrent, default_args)
......
......@@ -2,7 +2,7 @@ import argparse
import torch
import mmcv
from mmcv.torchpack import load_checkpoint, parallel_test, obj_from_dict
from mmcv.runner import load_checkpoint, parallel_test, obj_from_dict
from mmdet import datasets
from mmdet.core import scatter, MMDataParallel, results2json, coco_eval
......
......@@ -7,7 +7,7 @@ from collections import OrderedDict
import numpy as np
import torch
from mmcv import Config
from mmcv.torchpack import Runner, obj_from_dict
from mmcv.runner import Runner, obj_from_dict
from mmdet import datasets, __version__
from mmdet.core import (init_dist, DistOptimizerHook, DistSamplerSeedHook,
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment