coco.py 11.4 KB
Newer Older
Kai Chen's avatar
Kai Chen committed
1
2
3
4
5
6
7
import os.path as osp

import mmcv
import numpy as np
from pycocotools.coco import COCO
from torch.utils.data import Dataset

Kai Chen's avatar
Kai Chen committed
8
from .transforms import (ImageTransform, BboxTransform, MaskTransform,
Kai Chen's avatar
Kai Chen committed
9
                         Numpy2Tensor)
Kai Chen's avatar
Kai Chen committed
10
from .utils import to_tensor, show_ann, random_scale
Kai Chen's avatar
Kai Chen committed
11
12
13
14
from .utils import DataContainer as DC


class CocoDataset(Dataset):
Kai Chen's avatar
Kai Chen committed
15

Kai Chen's avatar
Kai Chen committed
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
    def __init__(self,
                 ann_file,
                 img_prefix,
                 img_scale,
                 img_norm_cfg,
                 size_divisor=None,
                 proposal_file=None,
                 num_max_proposals=1000,
                 flip_ratio=0,
                 with_mask=True,
                 with_crowd=True,
                 with_label=True,
                 test_mode=False,
                 debug=False):
        # path of the data file
        self.coco = COCO(ann_file)
        # filter images with no annotation during training
        if not test_mode:
            self.img_ids, self.img_infos = self._filter_imgs()
        else:
            self.img_ids = self.coco.getImgIds()
            self.img_infos = [
                self.coco.loadImgs(idx)[0] for idx in self.img_ids
            ]
        assert len(self.img_ids) == len(self.img_infos)
        # get the mapping from original category ids to labels
        self.cat_ids = self.coco.getCatIds()
        self.cat2label = {
            cat_id: i + 1
            for i, cat_id in enumerate(self.cat_ids)
        }
        # prefix of images path
        self.img_prefix = img_prefix
        # (long_edge, short_edge) or [(long1, short1), (long2, short2), ...]
        self.img_scales = img_scale if isinstance(img_scale,
                                                  list) else [img_scale]
        assert mmcv.is_list_of(self.img_scales, tuple)
        # color channel order and normalize configs
        self.img_norm_cfg = img_norm_cfg
        # proposals
        self.proposals = mmcv.load(
            proposal_file) if proposal_file is not None else None
        self.num_max_proposals = num_max_proposals
        # flip ratio
        self.flip_ratio = flip_ratio
        assert flip_ratio >= 0 and flip_ratio <= 1
        # padding border to ensure the image size can be divided by
        # size_divisor (used for FPN)
        self.size_divisor = size_divisor
        # with crowd or not, False when using RetinaNet
        self.with_crowd = with_crowd
        # with mask or not
        self.with_mask = with_mask
        # with label is False for RPN
        self.with_label = with_label
        # in test mode or not
        self.test_mode = test_mode
        # debug mode or not
        self.debug = debug

        # set group flag for the sampler
        self._set_group_flag()
        # transforms
        self.img_transform = ImageTransform(
            size_divisor=self.size_divisor, **self.img_norm_cfg)
        self.bbox_transform = BboxTransform()
Kai Chen's avatar
Kai Chen committed
82
        self.mask_transform = MaskTransform()
Kai Chen's avatar
Kai Chen committed
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
        self.numpy2tensor = Numpy2Tensor()

    def __len__(self):
        return len(self.img_ids)

    def _filter_imgs(self, min_size=32):
        """Filter images too small or without ground truths."""
        img_ids = list(set([_['image_id'] for _ in self.coco.anns.values()]))
        valid_ids = []
        img_infos = []
        for i in img_ids:
            info = self.coco.loadImgs(i)[0]
            if min(info['width'], info['height']) >= min_size:
                valid_ids.append(i)
                img_infos.append(info)
        return valid_ids, img_infos

    def _load_ann_info(self, idx):
        img_id = self.img_ids[idx]
        ann_ids = self.coco.getAnnIds(imgIds=img_id)
        ann_info = self.coco.loadAnns(ann_ids)
        return ann_info

Kai Chen's avatar
Kai Chen committed
106
107
108
109
110
111
112
113
114
115
116
117
118
119
    def _parse_ann_info(self, ann_info, with_mask=True):
        """Parse bbox and mask annotation.

        Args:
            ann_info (list[dict]): Annotation info of an image.
            with_mask (bool): Whether to parse mask annotations.

        Returns:
            dict: A dict containing the following keys: bboxes, bboxes_ignore,
                labels, masks, mask_polys, poly_lens.
        """
        gt_bboxes = []
        gt_labels = []
        gt_bboxes_ignore = []
Kai Chen's avatar
Kai Chen committed
120
121
122
123
        # Two formats are provided.
        # 1. mask: a binary map of the same size of the image.
        # 2. polys: each mask consists of one or several polys, each poly is a
        # list of float.
Kai Chen's avatar
Kai Chen committed
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
        if with_mask:
            gt_masks = []
            gt_mask_polys = []
            gt_poly_lens = []
        for i, ann in enumerate(ann_info):
            if ann.get('ignore', False):
                continue
            x1, y1, w, h = ann['bbox']
            if ann['area'] <= 0 or w < 1 or h < 1:
                continue
            bbox = [x1, y1, x1 + w - 1, y1 + h - 1]
            if ann['iscrowd']:
                gt_bboxes_ignore.append(bbox)
            else:
                gt_bboxes.append(bbox)
                gt_labels.append(self.cat2label[ann['category_id']])
            if with_mask:
                gt_masks.append(self.coco.annToMask(ann))
                mask_polys = [
                    p for p in ann['segmentation'] if len(p) >= 6
                ]  # valid polygons have >= 3 points (6 coordinates)
                poly_lens = [len(p) for p in mask_polys]
                gt_mask_polys.append(mask_polys)
                gt_poly_lens.extend(poly_lens)
        if gt_bboxes:
            gt_bboxes = np.array(gt_bboxes, dtype=np.float32)
            gt_labels = np.array(gt_labels, dtype=np.int64)
        else:
            gt_bboxes = np.zeros((0, 4), dtype=np.float32)
            gt_labels = np.array([], dtype=np.int64)

        if gt_bboxes_ignore:
            gt_bboxes_ignore = np.array(gt_bboxes_ignore, dtype=np.float32)
        else:
            gt_bboxes_ignore = np.zeros((0, 4), dtype=np.float32)

        ann = dict(
            bboxes=gt_bboxes, labels=gt_labels, bboxes_ignore=gt_bboxes_ignore)

        if with_mask:
            ann['masks'] = gt_masks
            # poly format is not used in the current implementation
            ann['mask_polys'] = gt_mask_polys
            ann['poly_lens'] = gt_poly_lens
        return ann

Kai Chen's avatar
Kai Chen committed
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
    def _set_group_flag(self):
        """Set flag according to image aspect ratio.

        Images with aspect ratio greater than 1 will be set as group 1,
        otherwise group 0.
        """
        self.flag = np.zeros(len(self.img_ids), dtype=np.uint8)
        for i in range(len(self.img_ids)):
            img_info = self.img_infos[i]
            if img_info['width'] / img_info['height'] > 1:
                self.flag[i] = 1

    def _rand_another(self, idx):
        pool = np.where(self.flag == self.flag[idx])[0]
        return np.random.choice(pool)

    def __getitem__(self, idx):
        if self.test_mode:
            return self.prepare_test_img(idx)
        while True:
            img_info = self.img_infos[idx]
            ann_info = self._load_ann_info(idx)

            # load image
            img = mmcv.imread(osp.join(self.img_prefix, img_info['file_name']))
            if self.debug:
                show_ann(self.coco, img, ann_info)

            # load proposals if necessary
            if self.proposals is not None:
                proposals = self.proposals[idx][:self.num_max_proposals, :4]
                # TODO: Handle empty proposals properly. Currently images with
                # no proposals are just ignored, but they can be used for
                # training in concept.
                if len(proposals) == 0:
                    idx = self._rand_another(idx)
                    continue

Kai Chen's avatar
Kai Chen committed
208
            ann = self._parse_ann_info(ann_info, self.with_mask)
Kai Chen's avatar
Kai Chen committed
209
210
211
212
213
214
215
216
217
218
219
            gt_bboxes = ann['bboxes']
            gt_labels = ann['labels']
            gt_bboxes_ignore = ann['bboxes_ignore']
            # skip the image if there is no valid gt bbox
            if len(gt_bboxes) == 0:
                idx = self._rand_another(idx)
                continue

            # apply transforms
            flip = True if np.random.rand() < self.flip_ratio else False
            img_scale = random_scale(self.img_scales)  # sample a scale
Kai Chen's avatar
Kai Chen committed
220
            img, img_shape, pad_shape, scale_factor = self.img_transform(
Kai Chen's avatar
Kai Chen committed
221
222
223
224
225
226
227
228
229
230
                img, img_scale, flip)
            if self.proposals is not None:
                proposals = self.bbox_transform(proposals, img_shape,
                                                scale_factor, flip)
            gt_bboxes = self.bbox_transform(gt_bboxes, img_shape, scale_factor,
                                            flip)
            gt_bboxes_ignore = self.bbox_transform(gt_bboxes_ignore, img_shape,
                                                   scale_factor, flip)

            if self.with_mask:
Kai Chen's avatar
Kai Chen committed
231
232
                gt_masks = self.mask_transform(ann['masks'], pad_shape,
                                               scale_factor, flip)
Kai Chen's avatar
Kai Chen committed
233

Kai Chen's avatar
Kai Chen committed
234
            ori_shape = (img_info['height'], img_info['width'], 3)
Kai Chen's avatar
Kai Chen committed
235
            img_meta = dict(
Kai Chen's avatar
Kai Chen committed
236
237
                ori_shape=ori_shape,
                img_shape=img_shape,
Kai Chen's avatar
Kai Chen committed
238
                pad_shape=pad_shape,
Kai Chen's avatar
Kai Chen committed
239
240
                scale_factor=scale_factor,
                flip=flip)
Kai Chen's avatar
Kai Chen committed
241
242

            data = dict(
Kai Chen's avatar
Kai Chen committed
243
244
245
                img=DC(to_tensor(img), stack=True),
                img_meta=DC(img_meta, cpu_only=True),
                gt_bboxes=DC(to_tensor(gt_bboxes)))
Kai Chen's avatar
Kai Chen committed
246
            if self.proposals is not None:
Kai Chen's avatar
Kai Chen committed
247
                data['proposals'] = DC(to_tensor(proposals))
Kai Chen's avatar
Kai Chen committed
248
            if self.with_label:
Kai Chen's avatar
Kai Chen committed
249
                data['gt_labels'] = DC(to_tensor(gt_labels))
Kai Chen's avatar
Kai Chen committed
250
            if self.with_crowd:
Kai Chen's avatar
Kai Chen committed
251
                data['gt_bboxes_ignore'] = DC(to_tensor(gt_bboxes_ignore))
Kai Chen's avatar
Kai Chen committed
252
            if self.with_mask:
Kai Chen's avatar
Kai Chen committed
253
                data['gt_masks'] = DC(gt_masks, cpu_only=True)
Kai Chen's avatar
Kai Chen committed
254
255
256
257
            return data

    def prepare_test_img(self, idx):
        """Prepare an image for testing (multi-scale and flipping)"""
pangjm's avatar
pangjm committed
258
259
        img_info = self.img_infos[idx]
        img = mmcv.imread(osp.join(self.img_prefix, img_info['file_name']))
Kai Chen's avatar
Kai Chen committed
260
261
262
        proposal = (self.proposals[idx][:, :4]
                    if self.proposals is not None else None)

pangjm's avatar
pangjm committed
263
        def prepare_single(img, scale, flip, proposal=None):
Kai Chen's avatar
Kai Chen committed
264
            _img, img_shape, pad_shape, scale_factor = self.img_transform(
pangjm's avatar
pangjm committed
265
                img, scale, flip)
Kai Chen's avatar
Kai Chen committed
266
267
268
            _img = to_tensor(_img)
            _img_meta = dict(
                ori_shape=(img_info['height'], img_info['width'], 3),
pangjm's avatar
pangjm committed
269
                img_shape=img_shape,
Kai Chen's avatar
Kai Chen committed
270
                pad_shape=pad_shape,
pangjm's avatar
pangjm committed
271
272
                scale_factor=scale_factor,
                flip=flip)
Kai Chen's avatar
Kai Chen committed
273
            if proposal is not None:
Kai Chen's avatar
Kai Chen committed
274
275
276
277
278
                _proposal = self.bbox_transform(proposal, scale_factor, flip)
                _proposal = to_tensor(_proposal)
            else:
                _proposal = None
            return _img, _img_meta, _proposal
Kai Chen's avatar
Kai Chen committed
279
280
281
282

        imgs = []
        img_metas = []
        proposals = []
pangjm's avatar
pangjm committed
283
        for scale in self.img_scales:
Kai Chen's avatar
Kai Chen committed
284
285
286
287
288
            _img, _img_meta, _proposal = prepare_single(
                img, scale, False, proposal)
            imgs.append(_img)
            img_metas.append(DC(_img_meta, cpu_only=True))
            proposals.append(_proposal)
Kai Chen's avatar
Kai Chen committed
289
            if self.flip_ratio > 0:
Kai Chen's avatar
Kai Chen committed
290
291
292
293
294
295
296
297
298
                _img, _img_meta, _proposal = prepare_single(
                    img, scale, True, proposal)
                imgs.append(_img)
                img_metas.append(DC(_img_meta, cpu_only=True))
                proposals.append(_proposal)
        data = dict(img=imgs, img_meta=img_metas)
        if self.proposals is not None:
            data['proposals'] = proposals
        return data