coco.py 11.2 KB
Newer Older
Kai Chen's avatar
Kai Chen committed
1
2
3
4
5
6
7
8
9
import os.path as osp

import mmcv
import numpy as np
from pycocotools.coco import COCO
from torch.utils.data import Dataset

from .transforms import (ImageTransform, BboxTransform, PolyMaskTransform,
                         Numpy2Tensor)
Kai Chen's avatar
Kai Chen committed
10
from .utils import to_tensor, show_ann, random_scale
Kai Chen's avatar
Kai Chen committed
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
from .utils import DataContainer as DC


def parse_ann_info(ann_info, cat2label, with_mask=True):
    """Parse bbox and mask annotation.

    Args:
        ann_info (list[dict]): Annotation info of an image.
        cat2label (dict): The mapping from category ids to labels.
        with_mask (bool): Whether to parse mask annotations.

    Returns:
        tuple: gt_bboxes, gt_labels and gt_mask_info
    """
    gt_bboxes = []
    gt_labels = []
    gt_bboxes_ignore = []
    # each mask consists of one or several polys, each poly is a list of float.
    if with_mask:
        gt_mask_polys = []
        gt_poly_lens = []
    for i, ann in enumerate(ann_info):
        if ann.get('ignore', False):
            continue
        x1, y1, w, h = ann['bbox']
        if ann['area'] <= 0 or w < 1 or h < 1:
            continue
        bbox = [x1, y1, x1 + w - 1, y1 + h - 1]
        if ann['iscrowd']:
            gt_bboxes_ignore.append(bbox)
        else:
            gt_bboxes.append(bbox)
            gt_labels.append(cat2label[ann['category_id']])
            if with_mask:
                # Note polys are not resized
                mask_polys = [
                    p for p in ann['segmentation'] if len(p) >= 6
                ]  # valid polygons have >= 3 points (6 coordinates)
                poly_lens = [len(p) for p in mask_polys]
                gt_mask_polys.append(mask_polys)
                gt_poly_lens.extend(poly_lens)
    if gt_bboxes:
        gt_bboxes = np.array(gt_bboxes, dtype=np.float32)
        gt_labels = np.array(gt_labels, dtype=np.int64)
    else:
        gt_bboxes = np.zeros((0, 4), dtype=np.float32)
        gt_labels = np.array([], dtype=np.int64)

    if gt_bboxes_ignore:
        gt_bboxes_ignore = np.array(gt_bboxes_ignore, dtype=np.float32)
    else:
        gt_bboxes_ignore = np.zeros((0, 4), dtype=np.float32)

    ann = dict(
        bboxes=gt_bboxes, labels=gt_labels, bboxes_ignore=gt_bboxes_ignore)

    if with_mask:
        ann['mask_polys'] = gt_mask_polys
        ann['poly_lens'] = gt_poly_lens
    return ann


class CocoDataset(Dataset):
Kai Chen's avatar
Kai Chen committed
74

Kai Chen's avatar
Kai Chen committed
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
    def __init__(self,
                 ann_file,
                 img_prefix,
                 img_scale,
                 img_norm_cfg,
                 size_divisor=None,
                 proposal_file=None,
                 num_max_proposals=1000,
                 flip_ratio=0,
                 with_mask=True,
                 with_crowd=True,
                 with_label=True,
                 test_mode=False,
                 debug=False):
        # path of the data file
        self.coco = COCO(ann_file)
        # filter images with no annotation during training
        if not test_mode:
            self.img_ids, self.img_infos = self._filter_imgs()
        else:
            self.img_ids = self.coco.getImgIds()
            self.img_infos = [
                self.coco.loadImgs(idx)[0] for idx in self.img_ids
            ]
        assert len(self.img_ids) == len(self.img_infos)
        # get the mapping from original category ids to labels
        self.cat_ids = self.coco.getCatIds()
        self.cat2label = {
            cat_id: i + 1
            for i, cat_id in enumerate(self.cat_ids)
        }
        # prefix of images path
        self.img_prefix = img_prefix
        # (long_edge, short_edge) or [(long1, short1), (long2, short2), ...]
        self.img_scales = img_scale if isinstance(img_scale,
                                                  list) else [img_scale]
        assert mmcv.is_list_of(self.img_scales, tuple)
        # color channel order and normalize configs
        self.img_norm_cfg = img_norm_cfg
        # proposals
        self.proposals = mmcv.load(
            proposal_file) if proposal_file is not None else None
        self.num_max_proposals = num_max_proposals
        # flip ratio
        self.flip_ratio = flip_ratio
        assert flip_ratio >= 0 and flip_ratio <= 1
        # padding border to ensure the image size can be divided by
        # size_divisor (used for FPN)
        self.size_divisor = size_divisor
        # with crowd or not, False when using RetinaNet
        self.with_crowd = with_crowd
        # with mask or not
        self.with_mask = with_mask
        # with label is False for RPN
        self.with_label = with_label
        # in test mode or not
        self.test_mode = test_mode
        # debug mode or not
        self.debug = debug

        # set group flag for the sampler
        self._set_group_flag()
        # transforms
        self.img_transform = ImageTransform(
            size_divisor=self.size_divisor, **self.img_norm_cfg)
        self.bbox_transform = BboxTransform()
        self.mask_transform = PolyMaskTransform()
        self.numpy2tensor = Numpy2Tensor()

    def __len__(self):
        return len(self.img_ids)

    def _filter_imgs(self, min_size=32):
        """Filter images too small or without ground truths."""
        img_ids = list(set([_['image_id'] for _ in self.coco.anns.values()]))
        valid_ids = []
        img_infos = []
        for i in img_ids:
            info = self.coco.loadImgs(i)[0]
            if min(info['width'], info['height']) >= min_size:
                valid_ids.append(i)
                img_infos.append(info)
        return valid_ids, img_infos

    def _load_ann_info(self, idx):
        img_id = self.img_ids[idx]
        ann_ids = self.coco.getAnnIds(imgIds=img_id)
        ann_info = self.coco.loadAnns(ann_ids)
        return ann_info

    def _set_group_flag(self):
        """Set flag according to image aspect ratio.

        Images with aspect ratio greater than 1 will be set as group 1,
        otherwise group 0.
        """
        self.flag = np.zeros(len(self.img_ids), dtype=np.uint8)
        for i in range(len(self.img_ids)):
            img_info = self.img_infos[i]
            if img_info['width'] / img_info['height'] > 1:
                self.flag[i] = 1

    def _rand_another(self, idx):
        pool = np.where(self.flag == self.flag[idx])[0]
        return np.random.choice(pool)

    def __getitem__(self, idx):
        if self.test_mode:
            return self.prepare_test_img(idx)
        while True:
            img_info = self.img_infos[idx]
            ann_info = self._load_ann_info(idx)

            # load image
            img = mmcv.imread(osp.join(self.img_prefix, img_info['file_name']))
            if self.debug:
                show_ann(self.coco, img, ann_info)

            # load proposals if necessary
            if self.proposals is not None:
                proposals = self.proposals[idx][:self.num_max_proposals, :4]
                # TODO: Handle empty proposals properly. Currently images with
                # no proposals are just ignored, but they can be used for
                # training in concept.
                if len(proposals) == 0:
                    idx = self._rand_another(idx)
                    continue

            ann = parse_ann_info(ann_info, self.cat2label, self.with_mask)
            gt_bboxes = ann['bboxes']
            gt_labels = ann['labels']
            gt_bboxes_ignore = ann['bboxes_ignore']
            # skip the image if there is no valid gt bbox
            if len(gt_bboxes) == 0:
                idx = self._rand_another(idx)
                continue

            # apply transforms
            flip = True if np.random.rand() < self.flip_ratio else False
            img_scale = random_scale(self.img_scales)  # sample a scale
Kai Chen's avatar
Kai Chen committed
215
            img, img_shape, pad_shape, scale_factor = self.img_transform(
Kai Chen's avatar
Kai Chen committed
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
                img, img_scale, flip)
            if self.proposals is not None:
                proposals = self.bbox_transform(proposals, img_shape,
                                                scale_factor, flip)
            gt_bboxes = self.bbox_transform(gt_bboxes, img_shape, scale_factor,
                                            flip)
            gt_bboxes_ignore = self.bbox_transform(gt_bboxes_ignore, img_shape,
                                                   scale_factor, flip)

            if self.with_mask:
                gt_mask_polys, gt_poly_lens, num_polys_per_mask = \
                    self.mask_transform(
                        ann['mask_polys'], ann['poly_lens'],
                        img_info['height'], img_info['width'], flip)

Kai Chen's avatar
Kai Chen committed
231
            ori_shape = (img_info['height'], img_info['width'], 3)
Kai Chen's avatar
Kai Chen committed
232
            img_meta = dict(
Kai Chen's avatar
Kai Chen committed
233
234
                ori_shape=ori_shape,
                img_shape=img_shape,
Kai Chen's avatar
Kai Chen committed
235
                pad_shape=pad_shape,
Kai Chen's avatar
Kai Chen committed
236
237
                scale_factor=scale_factor,
                flip=flip)
Kai Chen's avatar
Kai Chen committed
238
239

            data = dict(
Kai Chen's avatar
Kai Chen committed
240
241
242
                img=DC(to_tensor(img), stack=True),
                img_meta=DC(img_meta, cpu_only=True),
                gt_bboxes=DC(to_tensor(gt_bboxes)))
Kai Chen's avatar
Kai Chen committed
243
            if self.proposals is not None:
Kai Chen's avatar
Kai Chen committed
244
                data['proposals'] = DC(to_tensor(proposals))
Kai Chen's avatar
Kai Chen committed
245
            if self.with_label:
Kai Chen's avatar
Kai Chen committed
246
                data['gt_labels'] = DC(to_tensor(gt_labels))
Kai Chen's avatar
Kai Chen committed
247
            if self.with_crowd:
Kai Chen's avatar
Kai Chen committed
248
                data['gt_bboxes_ignore'] = DC(to_tensor(gt_bboxes_ignore))
Kai Chen's avatar
Kai Chen committed
249
            if self.with_mask:
Kai Chen's avatar
Kai Chen committed
250
251
252
253
                data['gt_masks'] = dict(
                    polys=DC(gt_mask_polys, cpu_only=True),
                    poly_lens=DC(gt_poly_lens, cpu_only=True),
                    polys_per_mask=DC(num_polys_per_mask, cpu_only=True))
Kai Chen's avatar
Kai Chen committed
254
255
256
257
            return data

    def prepare_test_img(self, idx):
        """Prepare an image for testing (multi-scale and flipping)"""
pangjm's avatar
pangjm committed
258
259
        img_info = self.img_infos[idx]
        img = mmcv.imread(osp.join(self.img_prefix, img_info['file_name']))
Kai Chen's avatar
Kai Chen committed
260
261
262
        proposal = (self.proposals[idx][:, :4]
                    if self.proposals is not None else None)

pangjm's avatar
pangjm committed
263
        def prepare_single(img, scale, flip, proposal=None):
Kai Chen's avatar
Kai Chen committed
264
            _img, img_shape, pad_shape, scale_factor = self.img_transform(
pangjm's avatar
pangjm committed
265
                img, scale, flip)
Kai Chen's avatar
Kai Chen committed
266
267
268
            _img = to_tensor(_img)
            _img_meta = dict(
                ori_shape=(img_info['height'], img_info['width'], 3),
pangjm's avatar
pangjm committed
269
                img_shape=img_shape,
Kai Chen's avatar
Kai Chen committed
270
                pad_shape=pad_shape,
pangjm's avatar
pangjm committed
271
272
                scale_factor=scale_factor,
                flip=flip)
Kai Chen's avatar
Kai Chen committed
273
            if proposal is not None:
Kai Chen's avatar
Kai Chen committed
274
275
276
277
278
                _proposal = self.bbox_transform(proposal, scale_factor, flip)
                _proposal = to_tensor(_proposal)
            else:
                _proposal = None
            return _img, _img_meta, _proposal
Kai Chen's avatar
Kai Chen committed
279
280
281
282

        imgs = []
        img_metas = []
        proposals = []
pangjm's avatar
pangjm committed
283
        for scale in self.img_scales:
Kai Chen's avatar
Kai Chen committed
284
285
286
287
288
            _img, _img_meta, _proposal = prepare_single(
                img, scale, False, proposal)
            imgs.append(_img)
            img_metas.append(DC(_img_meta, cpu_only=True))
            proposals.append(_proposal)
Kai Chen's avatar
Kai Chen committed
289
            if self.flip_ratio > 0:
Kai Chen's avatar
Kai Chen committed
290
291
292
293
294
295
296
297
298
                _img, _img_meta, _proposal = prepare_single(
                    img, scale, True, proposal)
                imgs.append(_img)
                img_metas.append(DC(_img_meta, cpu_only=True))
                proposals.append(_proposal)
        data = dict(img=imgs, img_meta=img_metas)
        if self.proposals is not None:
            data['proposals'] = proposals
        return data