coco.py 10.8 KB
Newer Older
Kai Chen's avatar
Kai Chen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
import os.path as osp

import mmcv
import numpy as np
from pycocotools.coco import COCO
from torch.utils.data import Dataset

from .transforms import (ImageTransform, BboxTransform, PolyMaskTransform,
                         Numpy2Tensor)
from .utils import show_ann, random_scale
from .utils import DataContainer as DC


def parse_ann_info(ann_info, cat2label, with_mask=True):
    """Parse bbox and mask annotation.

    Args:
        ann_info (list[dict]): Annotation info of an image.
        cat2label (dict): The mapping from category ids to labels.
        with_mask (bool): Whether to parse mask annotations.

    Returns:
        tuple: gt_bboxes, gt_labels and gt_mask_info
    """
    gt_bboxes = []
    gt_labels = []
    gt_bboxes_ignore = []
    # each mask consists of one or several polys, each poly is a list of float.
    if with_mask:
        gt_mask_polys = []
        gt_poly_lens = []
    for i, ann in enumerate(ann_info):
        if ann.get('ignore', False):
            continue
        x1, y1, w, h = ann['bbox']
        if ann['area'] <= 0 or w < 1 or h < 1:
            continue
        bbox = [x1, y1, x1 + w - 1, y1 + h - 1]
        if ann['iscrowd']:
            gt_bboxes_ignore.append(bbox)
        else:
            gt_bboxes.append(bbox)
            gt_labels.append(cat2label[ann['category_id']])
            if with_mask:
                # Note polys are not resized
                mask_polys = [
                    p for p in ann['segmentation'] if len(p) >= 6
                ]  # valid polygons have >= 3 points (6 coordinates)
                poly_lens = [len(p) for p in mask_polys]
                gt_mask_polys.append(mask_polys)
                gt_poly_lens.extend(poly_lens)
    if gt_bboxes:
        gt_bboxes = np.array(gt_bboxes, dtype=np.float32)
        gt_labels = np.array(gt_labels, dtype=np.int64)
    else:
        gt_bboxes = np.zeros((0, 4), dtype=np.float32)
        gt_labels = np.array([], dtype=np.int64)

    if gt_bboxes_ignore:
        gt_bboxes_ignore = np.array(gt_bboxes_ignore, dtype=np.float32)
    else:
        gt_bboxes_ignore = np.zeros((0, 4), dtype=np.float32)

    ann = dict(
        bboxes=gt_bboxes, labels=gt_labels, bboxes_ignore=gt_bboxes_ignore)

    if with_mask:
        ann['mask_polys'] = gt_mask_polys
        ann['poly_lens'] = gt_poly_lens
    return ann


class CocoDataset(Dataset):

    def __init__(self,
                 ann_file,
                 img_prefix,
                 img_scale,
                 img_norm_cfg,
                 size_divisor=None,
                 proposal_file=None,
                 num_max_proposals=1000,
                 flip_ratio=0,
                 with_mask=True,
                 with_crowd=True,
                 with_label=True,
                 test_mode=False,
                 debug=False):
        # path of the data file
        self.coco = COCO(ann_file)
        # filter images with no annotation during training
        if not test_mode:
            self.img_ids, self.img_infos = self._filter_imgs()
        else:
            self.img_ids = self.coco.getImgIds()
            self.img_infos = [
                self.coco.loadImgs(idx)[0] for idx in self.img_ids
            ]
        assert len(self.img_ids) == len(self.img_infos)
        # get the mapping from original category ids to labels
        self.cat_ids = self.coco.getCatIds()
        self.cat2label = {
            cat_id: i + 1
            for i, cat_id in enumerate(self.cat_ids)
        }
        # prefix of images path
        self.img_prefix = img_prefix
        # (long_edge, short_edge) or [(long1, short1), (long2, short2), ...]
        self.img_scales = img_scale if isinstance(img_scale,
                                                  list) else [img_scale]
        assert mmcv.is_list_of(self.img_scales, tuple)
        # color channel order and normalize configs
        self.img_norm_cfg = img_norm_cfg
        # proposals
        self.proposals = mmcv.load(
            proposal_file) if proposal_file is not None else None
        self.num_max_proposals = num_max_proposals
        # flip ratio
        self.flip_ratio = flip_ratio
        assert flip_ratio >= 0 and flip_ratio <= 1
        # padding border to ensure the image size can be divided by
        # size_divisor (used for FPN)
        self.size_divisor = size_divisor
        # with crowd or not, False when using RetinaNet
        self.with_crowd = with_crowd
        # with mask or not
        self.with_mask = with_mask
        # with label is False for RPN
        self.with_label = with_label
        # in test mode or not
        self.test_mode = test_mode
        # debug mode or not
        self.debug = debug

        # set group flag for the sampler
        self._set_group_flag()
        # transforms
        self.img_transform = ImageTransform(
            size_divisor=self.size_divisor, **self.img_norm_cfg)
        self.bbox_transform = BboxTransform()
        self.mask_transform = PolyMaskTransform()
        self.numpy2tensor = Numpy2Tensor()

    def __len__(self):
        return len(self.img_ids)

    def _filter_imgs(self, min_size=32):
        """Filter images too small or without ground truths."""
        img_ids = list(set([_['image_id'] for _ in self.coco.anns.values()]))
        valid_ids = []
        img_infos = []
        for i in img_ids:
            info = self.coco.loadImgs(i)[0]
            if min(info['width'], info['height']) >= min_size:
                valid_ids.append(i)
                img_infos.append(info)
        return valid_ids, img_infos

    def _load_ann_info(self, idx):
        img_id = self.img_ids[idx]
        ann_ids = self.coco.getAnnIds(imgIds=img_id)
        ann_info = self.coco.loadAnns(ann_ids)
        return ann_info

    def _set_group_flag(self):
        """Set flag according to image aspect ratio.

        Images with aspect ratio greater than 1 will be set as group 1,
        otherwise group 0.
        """
        self.flag = np.zeros(len(self.img_ids), dtype=np.uint8)
        for i in range(len(self.img_ids)):
            img_info = self.img_infos[i]
            if img_info['width'] / img_info['height'] > 1:
                self.flag[i] = 1

    def _rand_another(self, idx):
        pool = np.where(self.flag == self.flag[idx])[0]
        return np.random.choice(pool)

    def __getitem__(self, idx):
        if self.test_mode:
            return self.prepare_test_img(idx)
        while True:
            img_info = self.img_infos[idx]
            ann_info = self._load_ann_info(idx)

            # load image
            img = mmcv.imread(osp.join(self.img_prefix, img_info['file_name']))
            if self.debug:
                show_ann(self.coco, img, ann_info)

            # load proposals if necessary
            if self.proposals is not None:
                proposals = self.proposals[idx][:self.num_max_proposals, :4]
                # TODO: Handle empty proposals properly. Currently images with
                # no proposals are just ignored, but they can be used for
                # training in concept.
                if len(proposals) == 0:
                    idx = self._rand_another(idx)
                    continue

            ann = parse_ann_info(ann_info, self.cat2label, self.with_mask)
            gt_bboxes = ann['bboxes']
            gt_labels = ann['labels']
            gt_bboxes_ignore = ann['bboxes_ignore']
            # skip the image if there is no valid gt bbox
            if len(gt_bboxes) == 0:
                idx = self._rand_another(idx)
                continue

            # apply transforms
            flip = True if np.random.rand() < self.flip_ratio else False
            img_scale = random_scale(self.img_scales)  # sample a scale
            img, img_shape, scale_factor = self.img_transform(
                img, img_scale, flip)
            if self.proposals is not None:
                proposals = self.bbox_transform(proposals, img_shape,
                                                scale_factor, flip)
            gt_bboxes = self.bbox_transform(gt_bboxes, img_shape, scale_factor,
                                            flip)
            gt_bboxes_ignore = self.bbox_transform(gt_bboxes_ignore, img_shape,
                                                   scale_factor, flip)

            if self.with_mask:
                gt_mask_polys, gt_poly_lens, num_polys_per_mask = \
                    self.mask_transform(
                        ann['mask_polys'], ann['poly_lens'],
                        img_info['height'], img_info['width'], flip)

            ori_shape = (img_info['height'], img_info['width'])
            img_meta = dict(
                ori_shape=DC(ori_shape),
                img_shape=DC(img_shape),
                scale_factor=DC(scale_factor),
                flip=DC(flip))

            data = dict(
                img=DC(img, stack=True),
                img_meta=img_meta,
                gt_bboxes=DC(gt_bboxes))
            if self.proposals is not None:
                data['proposals'] = DC(proposals)
            if self.with_label:
                data['gt_labels'] = DC(gt_labels)
            if self.with_crowd:
                data['gt_bboxes_ignore'] = DC(gt_bboxes_ignore)
            if self.with_mask:
                data['gt_mask_polys'] = DC(gt_mask_polys)
                data['gt_poly_lens'] = DC(gt_poly_lens)
                data['num_polys_per_mask'] = DC(num_polys_per_mask)
            return data

    def prepare_test_img(self, idx):
        """Prepare an image for testing (multi-scale and flipping)"""
        img_info = self._load_info(idx, with_ann=False)
        img_file = osp.join(self.prefix, img_info['file_name'])
        proposal = (self.proposals[idx][:, :4]
                    if self.proposals is not None else None)

        def prepare_single(img_file, scale, flip, proposal=None):
            img_np, shape_scale_np = self.img_transform(img_file, scale, flip)
            img, shape_scale = self.numpy2tensor(img_np, shape_scale_np)
            img_meta = dict(shape_scale=shape_scale, flip=flip)
            if proposal is not None:
                proposal = self.bbox_transform(proposal, shape_scale_np, flip)
                proposal = self.numpy2tensor(proposal)
            return img, img_meta, proposal

        imgs = []
        img_metas = []
        proposals = []
        for scale in self.img_scale:
            img, img_meta, proposal = prepare_single(img_file, scale, False,
                                                     proposal)
            imgs.append(img)
            img_metas.append(img_meta)
            proposals.append(proposal)
            if self.flip_ratio > 0:
                img, img_meta, prop = prepare_single(img_file, scale, True,
                                                     proposal)
                imgs.append(img)
                img_metas.append(img_meta)
                proposals.append(prop)
        if self.proposals is None:
            return imgs, img_metas
        else:
            return imgs, img_metas, proposals