deform_conv.py 4.6 KB
Newer Older
yhcao6's avatar
yhcao6 committed
1
2
3
4
5
6
import math

import torch
import torch.nn as nn
from torch.nn.modules.utils import _pair

7
from ..functions.deform_conv import deform_conv, modulated_deform_conv
yhcao6's avatar
yhcao6 committed
8
9


10
class DeformConv(nn.Module):
yhcao6's avatar
yhcao6 committed
11
12
13
14
15
16
17
18

    def __init__(self,
                 in_channels,
                 out_channels,
                 kernel_size,
                 stride=1,
                 padding=0,
                 dilation=1,
yhcao6's avatar
yhcao6 committed
19
                 groups=1,
20
                 deformable_groups=1,
Kai Chen's avatar
Kai Chen committed
21
22
                 bias=False):
        assert not bias
yhcao6's avatar
yhcao6 committed
23
        super(DeformConv, self).__init__()
24
25
26
27
28
29
30

        assert in_channels % groups == 0, \
            'in_channels {} cannot be divisible by groups {}'.format(
                in_channels, groups)
        assert out_channels % groups == 0, \
            'out_channels {} cannot be divisible by groups {}'.format(
                out_channels, groups)
yhcao6's avatar
yhcao6 committed
31
32
33
34
35
36
        self.in_channels = in_channels
        self.out_channels = out_channels
        self.kernel_size = _pair(kernel_size)
        self.stride = _pair(stride)
        self.padding = _pair(padding)
        self.dilation = _pair(dilation)
yhcao6's avatar
yhcao6 committed
37
        self.groups = groups
38
        self.deformable_groups = deformable_groups
yhcao6's avatar
yhcao6 committed
39
40

        self.weight = nn.Parameter(
yhcao6's avatar
yhcao6 committed
41
42
            torch.Tensor(out_channels, in_channels // self.groups,
                         *self.kernel_size))
yhcao6's avatar
yhcao6 committed
43
44
45
46
47
48
49
50

        self.reset_parameters()

    def reset_parameters(self):
        n = self.in_channels
        for k in self.kernel_size:
            n *= k
        stdv = 1. / math.sqrt(n)
yhcao6's avatar
yhcao6 committed
51
        self.weight.data.uniform_(-stdv, stdv)
yhcao6's avatar
yhcao6 committed
52
53

    def forward(self, input, offset):
yhcao6's avatar
yhcao6 committed
54
        return deform_conv(input, offset, self.weight, self.stride,
yhcao6's avatar
yhcao6 committed
55
56
                           self.padding, self.dilation, self.groups,
                           self.deformable_groups)
57
58
59
60
61
62
63
64


class ModulatedDeformConv(nn.Module):

    def __init__(self,
                 in_channels,
                 out_channels,
                 kernel_size,
65
66
                 stride=1,
                 padding=0,
67
                 dilation=1,
yhcao6's avatar
yhcao6 committed
68
                 groups=1,
69
                 deformable_groups=1,
70
                 bias=True):
71
72
73
74
75
76
77
        super(ModulatedDeformConv, self).__init__()
        self.in_channels = in_channels
        self.out_channels = out_channels
        self.kernel_size = _pair(kernel_size)
        self.stride = stride
        self.padding = padding
        self.dilation = dilation
yhcao6's avatar
yhcao6 committed
78
        self.groups = groups
79
        self.deformable_groups = deformable_groups
80
        self.with_bias = bias
81
82

        self.weight = nn.Parameter(
yhcao6's avatar
yhcao6 committed
83
84
            torch.Tensor(out_channels, in_channels // groups,
                         *self.kernel_size))
85
86
87
        if bias:
            self.bias = nn.Parameter(torch.Tensor(out_channels))
        else:
88
            self.register_parameter('bias', None)
89
90
91
92
93
94
95
96
        self.reset_parameters()

    def reset_parameters(self):
        n = self.in_channels
        for k in self.kernel_size:
            n *= k
        stdv = 1. / math.sqrt(n)
        self.weight.data.uniform_(-stdv, stdv)
97
        if self.bias is not None:
98
            self.bias.data.zero_()
99
100

    def forward(self, input, offset, mask):
yhcao6's avatar
yhcao6 committed
101
102
103
        return modulated_deform_conv(
            input, offset, mask, self.weight, self.bias, self.stride,
            self.padding, self.dilation, self.groups, self.deformable_groups)
104
105
106
107
108
109
110
111


class ModulatedDeformConvPack(ModulatedDeformConv):

    def __init__(self,
                 in_channels,
                 out_channels,
                 kernel_size,
112
113
                 stride=1,
                 padding=0,
114
                 dilation=1,
yhcao6's avatar
yhcao6 committed
115
                 groups=1,
116
                 deformable_groups=1,
117
                 bias=True):
yhcao6's avatar
yhcao6 committed
118
119
120
        super(ModulatedDeformConvPack, self).__init__(
            in_channels, out_channels, kernel_size, stride, padding, dilation,
            groups, deformable_groups, bias)
121
122

        self.conv_offset_mask = nn.Conv2d(
yhcao6's avatar
yhcao6 committed
123
            self.in_channels // self.groups,
124
125
126
            self.deformable_groups * 3 * self.kernel_size[0] *
            self.kernel_size[1],
            kernel_size=self.kernel_size,
127
128
            stride=_pair(self.stride),
            padding=_pair(self.padding),
129
130
131
132
133
134
135
136
137
138
139
140
            bias=True)
        self.init_offset()

    def init_offset(self):
        self.conv_offset_mask.weight.data.zero_()
        self.conv_offset_mask.bias.data.zero_()

    def forward(self, input):
        out = self.conv_offset_mask(input)
        o1, o2, mask = torch.chunk(out, 3, dim=1)
        offset = torch.cat((o1, o2), dim=1)
        mask = torch.sigmoid(mask)
yhcao6's avatar
yhcao6 committed
141
142
143
        return modulated_deform_conv(
            input, offset, mask, self.weight, self.bias, self.stride,
            self.padding, self.dilation, self.groups, self.deformable_groups)