deform_conv.py 4.08 KB
Newer Older
yhcao6's avatar
yhcao6 committed
1
2
3
4
5
6
import math

import torch
import torch.nn as nn
from torch.nn.modules.utils import _pair

7
from ..functions.deform_conv import deform_conv, modulated_deform_conv
yhcao6's avatar
yhcao6 committed
8
9


10
class DeformConv(nn.Module):
yhcao6's avatar
yhcao6 committed
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

    def __init__(self,
                 in_channels,
                 out_channels,
                 kernel_size,
                 stride=1,
                 padding=0,
                 dilation=1,
                 num_deformable_groups=1):
        super(DeformConv, self).__init__()
        self.in_channels = in_channels
        self.out_channels = out_channels
        self.kernel_size = _pair(kernel_size)
        self.stride = _pair(stride)
        self.padding = _pair(padding)
        self.dilation = _pair(dilation)
        self.num_deformable_groups = num_deformable_groups

        self.weight = nn.Parameter(
            torch.Tensor(out_channels, in_channels, *self.kernel_size))

        self.reset_parameters()

    def reset_parameters(self):
        n = self.in_channels
        for k in self.kernel_size:
            n *= k
        stdv = 1. / math.sqrt(n)
yhcao6's avatar
yhcao6 committed
39
        self.weight.data.uniform_(-stdv, stdv)
yhcao6's avatar
yhcao6 committed
40
41

    def forward(self, input, offset):
yhcao6's avatar
yhcao6 committed
42
43
44
        return deform_conv(input, offset, self.weight, self.stride,
                           self.padding, self.dilation,
                           self.num_deformable_groups)
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125


class ModulatedDeformConv(nn.Module):

    def __init__(self,
                 in_channels,
                 out_channels,
                 kernel_size,
                 stride,
                 padding,
                 dilation=1,
                 deformable_groups=1,
                 no_bias=True):
        super(ModulatedDeformConv, self).__init__()
        self.in_channels = in_channels
        self.out_channels = out_channels
        self.kernel_size = _pair(kernel_size)
        self.stride = stride
        self.padding = padding
        self.dilation = dilation
        self.deformable_groups = deformable_groups
        self.no_bias = no_bias

        self.weight = nn.Parameter(
            torch.Tensor(out_channels, in_channels, *self.kernel_size))
        self.bias = nn.Parameter(torch.zeros(out_channels))
        self.reset_parameters()
        if self.no_bias:
            self.bias.requires_grad = False

    def reset_parameters(self):
        n = self.in_channels
        for k in self.kernel_size:
            n *= k
        stdv = 1. / math.sqrt(n)
        self.weight.data.uniform_(-stdv, stdv)
        self.bias.data.zero_()

    def forward(self, input, offset, mask):
        return modulated_deform_conv(input, offset, mask, self.weight,
                                     self.bias, self.stride, self.padding,
                                     self.dilation, self.deformable_groups)


class ModulatedDeformConvPack(ModulatedDeformConv):

    def __init__(self,
                 in_channels,
                 out_channels,
                 kernel_size,
                 stride,
                 padding,
                 dilation=1,
                 deformable_groups=1,
                 no_bias=False):
        super(ModulatedDeformConvPack,
              self).__init__(in_channels, out_channels, kernel_size, stride,
                             padding, dilation, deformable_groups, no_bias)

        self.conv_offset_mask = nn.Conv2d(
            self.in_channels,
            self.deformable_groups * 3 * self.kernel_size[0] *
            self.kernel_size[1],
            kernel_size=self.kernel_size,
            stride=(self.stride, self.stride),
            padding=(self.padding, self.padding),
            bias=True)
        self.init_offset()

    def init_offset(self):
        self.conv_offset_mask.weight.data.zero_()
        self.conv_offset_mask.bias.data.zero_()

    def forward(self, input):
        out = self.conv_offset_mask(input)
        o1, o2, mask = torch.chunk(out, 3, dim=1)
        offset = torch.cat((o1, o2), dim=1)
        mask = torch.sigmoid(mask)
        return modulated_deform_conv(input, offset, mask, self.weight,
                                     self.bias, self.stride, self.padding,
                                     self.dilation, self.deformable_groups)