resnet.py 9.96 KB
Newer Older
1
2
import logging

Kai Chen's avatar
Kai Chen committed
3
4
import torch.nn as nn
import torch.utils.checkpoint as cp
Kai Chen's avatar
Kai Chen committed
5
6

from mmcv.cnn import constant_init, kaiming_init
Kai Chen's avatar
Kai Chen committed
7
from mmcv.runner import load_checkpoint
Kai Chen's avatar
Kai Chen committed
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30


def conv3x3(in_planes, out_planes, stride=1, dilation=1):
    "3x3 convolution with padding"
    return nn.Conv2d(
        in_planes,
        out_planes,
        kernel_size=3,
        stride=stride,
        padding=dilation,
        dilation=dilation,
        bias=False)


class BasicBlock(nn.Module):
    expansion = 1

    def __init__(self,
                 inplanes,
                 planes,
                 stride=1,
                 dilation=1,
                 downsample=None,
Kai Chen's avatar
Kai Chen committed
31
32
                 style='pytorch',
                 with_cp=False):
Kai Chen's avatar
Kai Chen committed
33
34
35
36
37
38
39
40
41
        super(BasicBlock, self).__init__()
        self.conv1 = conv3x3(inplanes, planes, stride, dilation)
        self.bn1 = nn.BatchNorm2d(planes)
        self.relu = nn.ReLU(inplace=True)
        self.conv2 = conv3x3(planes, planes)
        self.bn2 = nn.BatchNorm2d(planes)
        self.downsample = downsample
        self.stride = stride
        self.dilation = dilation
Kai Chen's avatar
Kai Chen committed
42
        assert not with_cp
Kai Chen's avatar
Kai Chen committed
43
44

    def forward(self, x):
pangjm's avatar
pangjm committed
45
        identity = x
Kai Chen's avatar
Kai Chen committed
46
47
48
49
50
51
52
53
54

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)

        if self.downsample is not None:
pangjm's avatar
pangjm committed
55
            identity = self.downsample(x)
Kai Chen's avatar
Kai Chen committed
56

pangjm's avatar
pangjm committed
57
        out += identity
Kai Chen's avatar
Kai Chen committed
58
59
60
61
62
63
64
65
66
67
68
69
70
71
        out = self.relu(out)

        return out


class Bottleneck(nn.Module):
    expansion = 4

    def __init__(self,
                 inplanes,
                 planes,
                 stride=1,
                 dilation=1,
                 downsample=None,
72
                 style='pytorch',
Kai Chen's avatar
Kai Chen committed
73
                 with_cp=False):
pangjm's avatar
pangjm committed
74
        """Bottleneck block for ResNet.
75
76
        If style is "pytorch", the stride-two layer is the 3x3 conv layer,
        if it is "caffe", the stride-two layer is the first 1x1 conv layer.
Kai Chen's avatar
Kai Chen committed
77
78
        """
        super(Bottleneck, self).__init__()
79
        assert style in ['pytorch', 'caffe']
pangjm's avatar
pangjm committed
80
81
        self.inplanes = inplanes
        self.planes = planes
82
        if style == 'pytorch':
pangjm's avatar
pangjm committed
83
84
            self.conv1_stride = 1
            self.conv2_stride = stride
Kai Chen's avatar
Kai Chen committed
85
        else:
pangjm's avatar
pangjm committed
86
87
            self.conv1_stride = stride
            self.conv2_stride = 1
Kai Chen's avatar
Kai Chen committed
88
        self.conv1 = nn.Conv2d(
pangjm's avatar
pangjm committed
89
90
91
92
93
            inplanes,
            planes,
            kernel_size=1,
            stride=self.conv1_stride,
            bias=False)
Kai Chen's avatar
Kai Chen committed
94
95
96
97
        self.conv2 = nn.Conv2d(
            planes,
            planes,
            kernel_size=3,
pangjm's avatar
pangjm committed
98
            stride=self.conv2_stride,
Kai Chen's avatar
Kai Chen committed
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
            padding=dilation,
            dilation=dilation,
            bias=False)

        self.bn1 = nn.BatchNorm2d(planes)
        self.bn2 = nn.BatchNorm2d(planes)
        self.conv3 = nn.Conv2d(
            planes, planes * self.expansion, kernel_size=1, bias=False)
        self.bn3 = nn.BatchNorm2d(planes * self.expansion)
        self.relu = nn.ReLU(inplace=True)
        self.downsample = downsample
        self.stride = stride
        self.dilation = dilation
        self.with_cp = with_cp

    def forward(self, x):

        def _inner_forward(x):
pangjm's avatar
pangjm committed
117
            identity = x
Kai Chen's avatar
Kai Chen committed
118
119
120
121
122
123
124
125
126
127
128
129
130

            out = self.conv1(x)
            out = self.bn1(out)
            out = self.relu(out)

            out = self.conv2(out)
            out = self.bn2(out)
            out = self.relu(out)

            out = self.conv3(out)
            out = self.bn3(out)

            if self.downsample is not None:
pangjm's avatar
pangjm committed
131
                identity = self.downsample(x)
Kai Chen's avatar
Kai Chen committed
132

pangjm's avatar
pangjm committed
133
            out += identity
Kai Chen's avatar
Kai Chen committed
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152

            return out

        if self.with_cp and x.requires_grad:
            out = cp.checkpoint(_inner_forward, x)
        else:
            out = _inner_forward(x)

        out = self.relu(out)

        return out


def make_res_layer(block,
                   inplanes,
                   planes,
                   blocks,
                   stride=1,
                   dilation=1,
153
                   style='pytorch',
Kai Chen's avatar
Kai Chen committed
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
                   with_cp=False):
    downsample = None
    if stride != 1 or inplanes != planes * block.expansion:
        downsample = nn.Sequential(
            nn.Conv2d(
                inplanes,
                planes * block.expansion,
                kernel_size=1,
                stride=stride,
                bias=False),
            nn.BatchNorm2d(planes * block.expansion),
        )

    layers = []
    layers.append(
        block(
            inplanes,
            planes,
            stride,
            dilation,
            downsample,
            style=style,
            with_cp=with_cp))
    inplanes = planes * block.expansion
    for i in range(1, blocks):
        layers.append(
            block(inplanes, planes, 1, dilation, style=style, with_cp=with_cp))

    return nn.Sequential(*layers)


Kai Chen's avatar
Kai Chen committed
185
186
class ResNet(nn.Module):
    """ResNet backbone.
Kai Chen's avatar
Kai Chen committed
187

Kai Chen's avatar
Kai Chen committed
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
    Args:
        depth (int): Depth of resnet, from {18, 34, 50, 101, 152}.
        num_stages (int): Resnet stages, normally 4.
        strides (Sequence[int]): Strides of the first block of each stage.
        dilations (Sequence[int]): Dilation of each stage.
        out_indices (Sequence[int]): Output from which stages.
        style (str): `pytorch` or `caffe`. If set to "pytorch", the stride-two
            layer is the 3x3 conv layer, otherwise the stride-two layer is
            the first 1x1 conv layer.
        frozen_stages (int): Stages to be frozen (all param fixed). -1 means
            not freezing any parameters.
        bn_eval (bool): Whether to set BN layers to eval mode, namely, freeze
            running stats (mean and var).
        bn_frozen (bool): Whether to freeze weight and bias of BN layers.
        with_cp (bool): Use checkpoint or not. Using checkpoint will save some
            memory while slowing down the training speed.
    """
Kai Chen's avatar
Kai Chen committed
205

Kai Chen's avatar
Kai Chen committed
206
207
208
209
210
211
212
    arch_settings = {
        18: (BasicBlock, (2, 2, 2, 2)),
        34: (BasicBlock, (3, 4, 6, 3)),
        50: (Bottleneck, (3, 4, 6, 3)),
        101: (Bottleneck, (3, 4, 23, 3)),
        152: (Bottleneck, (3, 8, 36, 3))
    }
Kai Chen's avatar
Kai Chen committed
213
214

    def __init__(self,
Kai Chen's avatar
Kai Chen committed
215
216
                 depth,
                 num_stages=4,
Kai Chen's avatar
Kai Chen committed
217
218
219
                 strides=(1, 2, 2, 2),
                 dilations=(1, 1, 1, 1),
                 out_indices=(0, 1, 2, 3),
220
                 style='pytorch',
Kai Chen's avatar
Kai Chen committed
221
222
223
224
                 frozen_stages=-1,
                 bn_eval=True,
                 bn_frozen=False,
                 with_cp=False):
Kai Chen's avatar
Kai Chen committed
225
        super(ResNet, self).__init__()
Kai Chen's avatar
Kai Chen committed
226
227
        if depth not in self.arch_settings:
            raise KeyError('invalid depth {} for resnet'.format(depth))
pangjm's avatar
pangjm committed
228
229
        self.depth = depth
        self.num_stages = num_stages
Kai Chen's avatar
Kai Chen committed
230
        assert num_stages >= 1 and num_stages <= 4
pangjm's avatar
pangjm committed
231
232
        self.strides = strides
        self.dilations = dilations
Kai Chen's avatar
Kai Chen committed
233
        assert len(strides) == len(dilations) == num_stages
Kai Chen's avatar
Kai Chen committed
234
        self.out_indices = out_indices
pangjm's avatar
pangjm committed
235
        assert max(out_indices) < num_stages
Kai Chen's avatar
Kai Chen committed
236
        self.style = style
Kai Chen's avatar
Kai Chen committed
237
238
239
240
241
        self.frozen_stages = frozen_stages
        self.bn_eval = bn_eval
        self.bn_frozen = bn_frozen
        self.with_cp = with_cp

pangjm's avatar
pangjm committed
242
243
        self.block, stage_blocks = self.arch_settings[depth]
        self.stage_blocks = stage_blocks[:num_stages]
Kai Chen's avatar
Kai Chen committed
244
        self.inplanes = 64
pangjm's avatar
pangjm committed
245

Kai Chen's avatar
Kai Chen committed
246
247
248
249
250
251
        self.conv1 = nn.Conv2d(
            3, 64, kernel_size=7, stride=2, padding=3, bias=False)
        self.bn1 = nn.BatchNorm2d(64)
        self.relu = nn.ReLU(inplace=True)
        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)

Kai Chen's avatar
Kai Chen committed
252
        self.res_layers = []
pangjm's avatar
pangjm committed
253
        for i, num_blocks in enumerate(self.stage_blocks):
Kai Chen's avatar
Kai Chen committed
254
255
256
257
            stride = strides[i]
            dilation = dilations[i]
            planes = 64 * 2**i
            res_layer = make_res_layer(
pangjm's avatar
pangjm committed
258
                self.block,
Kai Chen's avatar
Kai Chen committed
259
260
261
262
263
264
265
                self.inplanes,
                planes,
                num_blocks,
                stride=stride,
                dilation=dilation,
                style=self.style,
                with_cp=with_cp)
pangjm's avatar
pangjm committed
266
            self.inplanes = planes * self.block.expansion
Kai Chen's avatar
Kai Chen committed
267
            layer_name = 'layer{}'.format(i + 1)
268
            self.add_module(layer_name, res_layer)
Kai Chen's avatar
Kai Chen committed
269
270
            self.res_layers.append(layer_name)

pangjm's avatar
pangjm committed
271
272
        self.feat_dim = self.block.expansion * 64 * 2**(
            len(self.stage_blocks) - 1)
pangjm's avatar
pangjm committed
273

Kai Chen's avatar
Kai Chen committed
274
275
    def init_weights(self, pretrained=None):
        if isinstance(pretrained, str):
276
277
            logger = logging.getLogger()
            load_checkpoint(self, pretrained, strict=False, logger=logger)
Kai Chen's avatar
Kai Chen committed
278
279
280
        elif pretrained is None:
            for m in self.modules():
                if isinstance(m, nn.Conv2d):
Kai Chen's avatar
Kai Chen committed
281
                    kaiming_init(m)
Kai Chen's avatar
Kai Chen committed
282
                elif isinstance(m, nn.BatchNorm2d):
Kai Chen's avatar
Kai Chen committed
283
                    constant_init(m, 1)
Kai Chen's avatar
Kai Chen committed
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
        else:
            raise TypeError('pretrained must be a str or None')

    def forward(self, x):
        x = self.conv1(x)
        x = self.bn1(x)
        x = self.relu(x)
        x = self.maxpool(x)
        outs = []
        for i, layer_name in enumerate(self.res_layers):
            res_layer = getattr(self, layer_name)
            x = res_layer(x)
            if i in self.out_indices:
                outs.append(x)
        if len(outs) == 1:
            return outs[0]
        else:
            return tuple(outs)

    def train(self, mode=True):
        super(ResNet, self).train(mode)
Kai Chen's avatar
Kai Chen committed
305
        if self.bn_eval:
Kai Chen's avatar
Kai Chen committed
306
307
308
            for m in self.modules():
                if isinstance(m, nn.BatchNorm2d):
                    m.eval()
Kai Chen's avatar
Kai Chen committed
309
                    if self.bn_frozen:
pangjm's avatar
pangjm committed
310
311
                        for params in m.parameters():
                            params.requires_grad = False
Kai Chen's avatar
Kai Chen committed
312
313
314
315
316
317
318
319
320
321
322
323
324
        if mode and self.frozen_stages >= 0:
            for param in self.conv1.parameters():
                param.requires_grad = False
            for param in self.bn1.parameters():
                param.requires_grad = False
            self.bn1.eval()
            self.bn1.weight.requires_grad = False
            self.bn1.bias.requires_grad = False
            for i in range(1, self.frozen_stages + 1):
                mod = getattr(self, 'layer{}'.format(i))
                mod.eval()
                for param in mod.parameters():
                    param.requires_grad = False