deform_conv.py 5.08 KB
Newer Older
yhcao6's avatar
yhcao6 committed
1
2
3
4
5
6
import math

import torch
import torch.nn as nn
from torch.nn.modules.utils import _pair

7
from ..functions.deform_conv import deform_conv, modulated_deform_conv
yhcao6's avatar
yhcao6 committed
8
9


10
class DeformConv(nn.Module):
yhcao6's avatar
yhcao6 committed
11
12
13
14
15
16
17
18

    def __init__(self,
                 in_channels,
                 out_channels,
                 kernel_size,
                 stride=1,
                 padding=0,
                 dilation=1,
yhcao6's avatar
yhcao6 committed
19
                 groups=1,
20
                 deformable_groups=1,
Kai Chen's avatar
Kai Chen committed
21
                 bias=False):
yhcao6's avatar
yhcao6 committed
22
        super(DeformConv, self).__init__()
23

Kai Chen's avatar
Kai Chen committed
24
        assert not bias
25
26
27
28
29
30
        assert in_channels % groups == 0, \
            'in_channels {} cannot be divisible by groups {}'.format(
                in_channels, groups)
        assert out_channels % groups == 0, \
            'out_channels {} cannot be divisible by groups {}'.format(
                out_channels, groups)
Kai Chen's avatar
Kai Chen committed
31

yhcao6's avatar
yhcao6 committed
32
33
34
35
36
37
        self.in_channels = in_channels
        self.out_channels = out_channels
        self.kernel_size = _pair(kernel_size)
        self.stride = _pair(stride)
        self.padding = _pair(padding)
        self.dilation = _pair(dilation)
yhcao6's avatar
yhcao6 committed
38
        self.groups = groups
39
        self.deformable_groups = deformable_groups
yhcao6's avatar
yhcao6 committed
40
41

        self.weight = nn.Parameter(
yhcao6's avatar
yhcao6 committed
42
43
            torch.Tensor(out_channels, in_channels // self.groups,
                         *self.kernel_size))
yhcao6's avatar
yhcao6 committed
44
45
46
47
48
49
50
51

        self.reset_parameters()

    def reset_parameters(self):
        n = self.in_channels
        for k in self.kernel_size:
            n *= k
        stdv = 1. / math.sqrt(n)
yhcao6's avatar
yhcao6 committed
52
        self.weight.data.uniform_(-stdv, stdv)
yhcao6's avatar
yhcao6 committed
53

Kai Chen's avatar
Kai Chen committed
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
    def forward(self, x, offset):
        return deform_conv(x, offset, self.weight, self.stride, self.padding,
                           self.dilation, self.groups, self.deformable_groups)


class DeformConvPack(DeformConv):

    def __init__(self, *args, **kwargs):
        super(ModulatedDeformConvPack, self).__init__(*args, **kwargs)

        self.conv_offset = nn.Conv2d(
            self.in_channels,
            self.deformable_groups * 2 * self.kernel_size[0] *
            self.kernel_size[1],
            kernel_size=self.kernel_size,
            stride=_pair(self.stride),
            padding=_pair(self.padding),
            bias=True)
        self.init_offset()

    def init_offset(self):
        self.conv_offset.weight.data.zero_()
        self.conv_offset.bias.data.zero_()

    def forward(self, x):
        offset = self.conv_offset(x)
        return deform_conv(x, offset, self.weight, self.stride, self.padding,
                           self.dilation, self.groups, self.deformable_groups)
82
83
84
85
86
87
88
89


class ModulatedDeformConv(nn.Module):

    def __init__(self,
                 in_channels,
                 out_channels,
                 kernel_size,
90
91
                 stride=1,
                 padding=0,
92
                 dilation=1,
yhcao6's avatar
yhcao6 committed
93
                 groups=1,
94
                 deformable_groups=1,
95
                 bias=True):
96
97
98
99
100
101
102
        super(ModulatedDeformConv, self).__init__()
        self.in_channels = in_channels
        self.out_channels = out_channels
        self.kernel_size = _pair(kernel_size)
        self.stride = stride
        self.padding = padding
        self.dilation = dilation
yhcao6's avatar
yhcao6 committed
103
        self.groups = groups
104
        self.deformable_groups = deformable_groups
105
        self.with_bias = bias
106
107

        self.weight = nn.Parameter(
yhcao6's avatar
yhcao6 committed
108
109
            torch.Tensor(out_channels, in_channels // groups,
                         *self.kernel_size))
110
111
112
        if bias:
            self.bias = nn.Parameter(torch.Tensor(out_channels))
        else:
113
            self.register_parameter('bias', None)
114
115
116
117
118
119
120
121
        self.reset_parameters()

    def reset_parameters(self):
        n = self.in_channels
        for k in self.kernel_size:
            n *= k
        stdv = 1. / math.sqrt(n)
        self.weight.data.uniform_(-stdv, stdv)
122
        if self.bias is not None:
123
            self.bias.data.zero_()
124

Kai Chen's avatar
Kai Chen committed
125
126
127
128
    def forward(self, x, offset, mask):
        return modulated_deform_conv(x, offset, mask, self.weight, self.bias,
                                     self.stride, self.padding, self.dilation,
                                     self.groups, self.deformable_groups)
129
130
131
132


class ModulatedDeformConvPack(ModulatedDeformConv):

Kai Chen's avatar
Kai Chen committed
133
134
    def __init__(self, *args, **kwargs):
        super(ModulatedDeformConvPack, self).__init__(*args, **kwargs)
135
136

        self.conv_offset_mask = nn.Conv2d(
Kai Chen's avatar
Kai Chen committed
137
            self.in_channels,
138
139
140
            self.deformable_groups * 3 * self.kernel_size[0] *
            self.kernel_size[1],
            kernel_size=self.kernel_size,
141
142
            stride=_pair(self.stride),
            padding=_pair(self.padding),
143
144
145
146
147
148
149
            bias=True)
        self.init_offset()

    def init_offset(self):
        self.conv_offset_mask.weight.data.zero_()
        self.conv_offset_mask.bias.data.zero_()

Kai Chen's avatar
Kai Chen committed
150
151
    def forward(self, x):
        out = self.conv_offset_mask(x)
152
153
154
        o1, o2, mask = torch.chunk(out, 3, dim=1)
        offset = torch.cat((o1, o2), dim=1)
        mask = torch.sigmoid(mask)
Kai Chen's avatar
Kai Chen committed
155
156
157
        return modulated_deform_conv(x, offset, mask, self.weight, self.bias,
                                     self.stride, self.padding, self.dilation,
                                     self.groups, self.deformable_groups)