image_predictor_example.py 5.63 KB
Newer Older
luopl's avatar
luopl committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
import os
import numpy as np
import torch
import matplotlib.pyplot as plt
from PIL import Image
from sam2.build_sam import build_sam2
from sam2.sam2_image_predictor import SAM2ImagePredictor

# Environment setup (assuming dependencies are installed)
os.environ["PYTORCH_ENABLE_MPS_FALLBACK"] = "1"

# Select device
if torch.cuda.is_available():
    device = torch.device("cuda")
    torch.autocast("cuda", dtype=torch.bfloat16).__enter__()
    if torch.cuda.get_device_properties(0).major >= 8:
        torch.backends.cuda.matmul.allow_tf32 = True
        torch.backends.cudnn.allow_tf32 = True
elif torch.backends.mps.is_available():
    device = torch.device("mps")
else:
    device = torch.device("cpu")
print(f"using device: {device}")

# Helper functions (modified to save instead of show)
def save_mask_on_image(image, mask, save_path, alpha=0.5, borders=True):
    fig, ax = plt.subplots(figsize=(10, 10))
    ax.imshow(image)

    color = np.array([30/255, 144/255, 255/255, alpha])
    h, w = mask.shape[-2:]
    mask = mask.astype(np.uint8)
    mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)

    if borders:
        import cv2
        contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)
        contours = [cv2.approxPolyDP(contour, epsilon=0.01, closed=True) for contour in contours]
        mask_image = cv2.drawContours(mask_image, contours, -1, (1, 1, 1, 0.5), thickness=2)

    ax.imshow(mask_image)
    ax.axis('off')
    plt.savefig(save_path, bbox_inches='tight', pad_inches=0)
    plt.close(fig)

def save_points_on_image(image, coords, labels, save_path):
    fig, ax = plt.subplots(figsize=(10, 10))
    ax.imshow(image)
    pos_points = coords[labels == 1]
    neg_points = coords[labels == 0]
    marker_size = 375
    ax.scatter(pos_points[:, 0], pos_points[:, 1], color='green', marker='*', s=marker_size, edgecolor='white', linewidth=1.25)
    ax.scatter(neg_points[:, 0], neg_points[:, 1], color='red', marker='*', s=marker_size, edgecolor='white', linewidth=1.25)
    ax.axis('off')
    plt.savefig(save_path, bbox_inches='tight', pad_inches=0)
    plt.close(fig)

def save_box_on_image(image, box, save_path):
    fig, ax = plt.subplots(figsize=(10, 10))
    ax.imshow(image)
    x0, y0 = box[0], box[1]
    w, h = box[2] - box[0], box[3] - box[1]
    ax.add_patch(plt.Rectangle((x0, y0), w, h, edgecolor='green', facecolor=(0, 0, 0, 0), lw=2))
    ax.axis('off')
    plt.savefig(save_path, bbox_inches='tight', pad_inches=0)
    plt.close(fig)


# Load model
sam2_checkpoint = "./checkpoints/sam2.1_hiera_large.pt"
model_cfg = "configs/sam2.1/sam2.1_hiera_l.yaml"
sam2 = build_sam2(model_cfg, sam2_checkpoint, device=device)
predictor = SAM2ImagePredictor(sam2)

# Example 1: Truck image with point prompt
image = Image.open('./notebooks/images/truck.jpg').convert("RGB")
image_np = np.array(image)

with torch.inference_mode(), torch.autocast(device.type, dtype=torch.bfloat16):
    predictor.set_image(image_np)
    input_point = np.array([[825, 619]])
    input_label = np.array([1])
    masks, scores, logits = predictor.predict(
        point_coords=input_point,
        point_labels=input_label,
        multimask_output=True,
    )

# Save results
os.makedirs("results", exist_ok=True)
for i, (mask, score) in enumerate(zip(masks, scores)):
    save_path = f"results/truck_mask_{i}_score_{score:.3f}.png"
    save_mask_on_image(image_np, mask, save_path)
    np.save(f"results/truck_mask_{i}.npy", mask)

save_points_on_image(image_np, input_point, input_label, "results/truck_points.png")

# Example 2: Truck with box prompt
with torch.inference_mode(), torch.autocast(device.type, dtype=torch.bfloat16):
    input_box = np.array([425, 600, 700, 875])
    masks, scores, _ = predictor.predict(
        point_coords=None,
        point_labels=None,
        box=input_box,
        multimask_output=False,
    )

for i, (mask, score) in enumerate(zip(masks, scores)):
    save_path = f"results/truck_box_mask_{i}_score_{score:.3f}.png"
    save_mask_on_image(image_np, mask, save_path)
    np.save(f"results/truck_box_mask_{i}.npy", mask)

save_box_on_image(image_np, input_box, "results/truck_box.png")

# Example 3: Truck with multiple points
with torch.inference_mode(), torch.autocast(device.type, dtype=torch.bfloat16):
    input_points = np.array([[450, 600], [775, 800]])
    input_labels = np.array([1, 1])
    masks, scores, _ = predictor.predict(
        point_coords=input_points,
        point_labels=input_labels,
        multimask_output=False,
    )

for i, (mask, score) in enumerate(zip(masks, scores)):
    save_path = f"results/truck_multi_points_mask_{i}_score_{score:.3f}.png"
    save_mask_on_image(image_np, mask, save_path)
    np.save(f"results/truck_multi_points_mask_{i}.npy", mask)

save_points_on_image(image_np, input_points, input_labels, "results/truck_multi_points.png")

# Example 4: Groceries image with batch prompts
image2 = Image.open('./notebooks/images/groceries.jpg').convert("RGB")
image2_np = np.array(image2)

with torch.inference_mode(), torch.autocast(device.type, dtype=torch.bfloat16):
    predictor.set_image(image2_np)
    input_points2 = np.array([[350, 450], [400, 450]])
    input_labels2 = np.array([1, 1])
    masks2, scores2, _ = predictor.predict(
        point_coords=input_points2,
        point_labels=input_labels2,
        multimask_output=False,
    )

for i, (mask, score) in enumerate(zip(masks2, scores2)):
    save_path = f"results/groceries_mask_{i}_score_{score:.3f}.png"
    save_mask_on_image(image2_np, mask, save_path)
    np.save(f"results/groceries_mask_{i}.npy", mask)

save_points_on_image(image2_np, input_points2, input_labels2, "results/groceries_points.png")

print("All results saved in 'results' folder.")