import os import numpy as np import torch import matplotlib.pyplot as plt from PIL import Image from sam2.build_sam import build_sam2 from sam2.sam2_image_predictor import SAM2ImagePredictor # Environment setup (assuming dependencies are installed) os.environ["PYTORCH_ENABLE_MPS_FALLBACK"] = "1" # Select device if torch.cuda.is_available(): device = torch.device("cuda") torch.autocast("cuda", dtype=torch.bfloat16).__enter__() if torch.cuda.get_device_properties(0).major >= 8: torch.backends.cuda.matmul.allow_tf32 = True torch.backends.cudnn.allow_tf32 = True elif torch.backends.mps.is_available(): device = torch.device("mps") else: device = torch.device("cpu") print(f"using device: {device}") # Helper functions (modified to save instead of show) def save_mask_on_image(image, mask, save_path, alpha=0.5, borders=True): fig, ax = plt.subplots(figsize=(10, 10)) ax.imshow(image) color = np.array([30/255, 144/255, 255/255, alpha]) h, w = mask.shape[-2:] mask = mask.astype(np.uint8) mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1) if borders: import cv2 contours, _ = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE) contours = [cv2.approxPolyDP(contour, epsilon=0.01, closed=True) for contour in contours] mask_image = cv2.drawContours(mask_image, contours, -1, (1, 1, 1, 0.5), thickness=2) ax.imshow(mask_image) ax.axis('off') plt.savefig(save_path, bbox_inches='tight', pad_inches=0) plt.close(fig) def save_points_on_image(image, coords, labels, save_path): fig, ax = plt.subplots(figsize=(10, 10)) ax.imshow(image) pos_points = coords[labels == 1] neg_points = coords[labels == 0] marker_size = 375 ax.scatter(pos_points[:, 0], pos_points[:, 1], color='green', marker='*', s=marker_size, edgecolor='white', linewidth=1.25) ax.scatter(neg_points[:, 0], neg_points[:, 1], color='red', marker='*', s=marker_size, edgecolor='white', linewidth=1.25) ax.axis('off') plt.savefig(save_path, bbox_inches='tight', pad_inches=0) plt.close(fig) def save_box_on_image(image, box, save_path): fig, ax = plt.subplots(figsize=(10, 10)) ax.imshow(image) x0, y0 = box[0], box[1] w, h = box[2] - box[0], box[3] - box[1] ax.add_patch(plt.Rectangle((x0, y0), w, h, edgecolor='green', facecolor=(0, 0, 0, 0), lw=2)) ax.axis('off') plt.savefig(save_path, bbox_inches='tight', pad_inches=0) plt.close(fig) # Load model sam2_checkpoint = "./checkpoints/sam2.1_hiera_large.pt" model_cfg = "configs/sam2.1/sam2.1_hiera_l.yaml" sam2 = build_sam2(model_cfg, sam2_checkpoint, device=device) predictor = SAM2ImagePredictor(sam2) # Example 1: Truck image with point prompt image = Image.open('./notebooks/images/truck.jpg').convert("RGB") image_np = np.array(image) with torch.inference_mode(), torch.autocast(device.type, dtype=torch.bfloat16): predictor.set_image(image_np) input_point = np.array([[825, 619]]) input_label = np.array([1]) masks, scores, logits = predictor.predict( point_coords=input_point, point_labels=input_label, multimask_output=True, ) # Save results os.makedirs("results", exist_ok=True) for i, (mask, score) in enumerate(zip(masks, scores)): save_path = f"results/truck_mask_{i}_score_{score:.3f}.png" save_mask_on_image(image_np, mask, save_path) np.save(f"results/truck_mask_{i}.npy", mask) save_points_on_image(image_np, input_point, input_label, "results/truck_points.png") # Example 2: Truck with box prompt with torch.inference_mode(), torch.autocast(device.type, dtype=torch.bfloat16): input_box = np.array([425, 600, 700, 875]) masks, scores, _ = predictor.predict( point_coords=None, point_labels=None, box=input_box, multimask_output=False, ) for i, (mask, score) in enumerate(zip(masks, scores)): save_path = f"results/truck_box_mask_{i}_score_{score:.3f}.png" save_mask_on_image(image_np, mask, save_path) np.save(f"results/truck_box_mask_{i}.npy", mask) save_box_on_image(image_np, input_box, "results/truck_box.png") # Example 3: Truck with multiple points with torch.inference_mode(), torch.autocast(device.type, dtype=torch.bfloat16): input_points = np.array([[450, 600], [775, 800]]) input_labels = np.array([1, 1]) masks, scores, _ = predictor.predict( point_coords=input_points, point_labels=input_labels, multimask_output=False, ) for i, (mask, score) in enumerate(zip(masks, scores)): save_path = f"results/truck_multi_points_mask_{i}_score_{score:.3f}.png" save_mask_on_image(image_np, mask, save_path) np.save(f"results/truck_multi_points_mask_{i}.npy", mask) save_points_on_image(image_np, input_points, input_labels, "results/truck_multi_points.png") # Example 4: Groceries image with batch prompts image2 = Image.open('./notebooks/images/groceries.jpg').convert("RGB") image2_np = np.array(image2) with torch.inference_mode(), torch.autocast(device.type, dtype=torch.bfloat16): predictor.set_image(image2_np) input_points2 = np.array([[350, 450], [400, 450]]) input_labels2 = np.array([1, 1]) masks2, scores2, _ = predictor.predict( point_coords=input_points2, point_labels=input_labels2, multimask_output=False, ) for i, (mask, score) in enumerate(zip(masks2, scores2)): save_path = f"results/groceries_mask_{i}_score_{score:.3f}.png" save_mask_on_image(image2_np, mask, save_path) np.save(f"results/groceries_mask_{i}.npy", mask) save_points_on_image(image2_np, input_points2, input_labels2, "results/groceries_points.png") print("All results saved in 'results' folder.")