ncf_keras_main.py 19.5 KB
Newer Older
Shining Sun's avatar
Shining Sun committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""NCF framework to train and evaluate the NeuMF model.

The NeuMF model assembles both MF and MLP models under the NCF framework. Check
`neumf_model.py` for more details about the models.
"""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

25
import json
Shining Sun's avatar
Shining Sun committed
26
27
28
import os

# pylint: disable=g-bad-import-order
David Chen's avatar
David Chen committed
29
from absl import app
Shining Sun's avatar
Shining Sun committed
30
from absl import flags
31
from absl import logging
Hongkun Yu's avatar
Hongkun Yu committed
32
import tensorflow.compat.v2 as tf
Shining Sun's avatar
Shining Sun committed
33
34
# pylint: enable=g-bad-import-order

35
from official.recommendation import constants as rconst
36
from official.recommendation import movielens
Shining Sun's avatar
Shining Sun committed
37
from official.recommendation import ncf_common
38
from official.recommendation import ncf_input_pipeline
Shining Sun's avatar
Shining Sun committed
39
from official.recommendation import neumf_model
40
from official.utils.flags import core as flags_core
41
from official.utils.misc import distribution_utils
42
from official.utils.misc import keras_utils
Shining Sun's avatar
Shining Sun committed
43
from official.utils.misc import model_helpers
44

Shining Sun's avatar
Shining Sun committed
45
46
47
48

FLAGS = flags.FLAGS


49
def metric_fn(logits, dup_mask, match_mlperf):
guptapriya's avatar
guptapriya committed
50
  dup_mask = tf.cast(dup_mask, tf.float32)
51
  logits = tf.slice(logits, [0, 1], [-1, -1])
guptapriya's avatar
guptapriya committed
52
53
54
  in_top_k, _, metric_weights, _ = neumf_model.compute_top_k_and_ndcg(
      logits,
      dup_mask,
55
      match_mlperf)
guptapriya's avatar
guptapriya committed
56
57
58
59
  metric_weights = tf.cast(metric_weights, tf.float32)
  return in_top_k, metric_weights


60
61
62
class MetricLayer(tf.keras.layers.Layer):
  """Custom layer of metrics for NCF model."""

63
  def __init__(self, match_mlperf):
64
    super(MetricLayer, self).__init__()
65
66
67
68
69
70
71
72
    self.match_mlperf = match_mlperf

  def get_config(self):
    return {"match_mlperf": self.match_mlperf}

  @classmethod
  def from_config(cls, config, custom_objects=None):
    return cls(**config)
guptapriya's avatar
guptapriya committed
73

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
74
  def call(self, inputs, training=False):
75
    logits, dup_mask = inputs
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
76
77
78
79
80

    if training:
      hr_sum = 0.0
      hr_count = 0.0
    else:
81
      metric, metric_weights = metric_fn(logits, dup_mask, self.match_mlperf)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
82
83
84
85
86
      hr_sum = tf.reduce_sum(metric * metric_weights)
      hr_count = tf.reduce_sum(metric_weights)

    self.add_metric(hr_sum, name="hr_sum", aggregation="mean")
    self.add_metric(hr_count, name="hr_count", aggregation="mean")
guptapriya's avatar
guptapriya committed
87
    return logits
88
89


90
91
92
93
class LossLayer(tf.keras.layers.Layer):
  """Pass-through loss layer for NCF model."""

  def __init__(self, loss_normalization_factor):
94
95
    # The loss may overflow in float16, so we use float32 instead.
    super(LossLayer, self).__init__(dtype="float32")
96
97
98
99
    self.loss_normalization_factor = loss_normalization_factor
    self.loss = tf.keras.losses.SparseCategoricalCrossentropy(
        from_logits=True, reduction="sum")

100
101
102
103
104
105
106
  def get_config(self):
    return {"loss_normalization_factor": self.loss_normalization_factor}

  @classmethod
  def from_config(cls, config, custom_objects=None):
    return cls(**config)

107
108
109
110
111
112
113
114
115
  def call(self, inputs):
    logits, labels, valid_pt_mask_input = inputs
    loss = self.loss(
        y_true=labels, y_pred=logits, sample_weight=valid_pt_mask_input)
    loss = loss * (1.0 / self.loss_normalization_factor)
    self.add_loss(loss)
    return logits


Shining Sun's avatar
Shining Sun committed
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
class IncrementEpochCallback(tf.keras.callbacks.Callback):
  """A callback to increase the requested epoch for the data producer.

  The reason why we need this is because we can only buffer a limited amount of
  data. So we keep a moving window to represent the buffer. This is to move the
  one of the window's boundaries for each epoch.
  """

  def __init__(self, producer):
    self._producer = producer

  def on_epoch_begin(self, epoch, logs=None):
    self._producer.increment_request_epoch()


131
132
133
134
135
136
137
138
class CustomEarlyStopping(tf.keras.callbacks.Callback):
  """Stop training has reached a desired hit rate."""

  def __init__(self, monitor, desired_value):
    super(CustomEarlyStopping, self).__init__()

    self.monitor = monitor
    self.desired = desired_value
139
    self.stopped_epoch = 0
140
141
142
143
144
145
146
147
148

  def on_epoch_end(self, epoch, logs=None):
    current = self.get_monitor_value(logs)
    if current and current >= self.desired:
      self.stopped_epoch = epoch
      self.model.stop_training = True

  def on_train_end(self, logs=None):
    if self.stopped_epoch > 0:
Haoyu Zhang's avatar
Haoyu Zhang committed
149
      print("Epoch %05d: early stopping" % (self.stopped_epoch + 1))
150
151
152
153
154

  def get_monitor_value(self, logs):
    logs = logs or {}
    monitor_value = logs.get(self.monitor)
    if monitor_value is None:
Haoyu Zhang's avatar
Haoyu Zhang committed
155
156
157
      logging.warning("Early stopping conditioned on metric `%s` "
                      "which is not available. Available metrics are: %s",
                      self.monitor, ",".join(list(logs.keys())))
158
159
160
    return monitor_value


Shining Sun's avatar
Shining Sun committed
161
162
def _get_keras_model(params):
  """Constructs and returns the model."""
Haoyu Zhang's avatar
Haoyu Zhang committed
163
  batch_size = params["batch_size"]
Shining Sun's avatar
Shining Sun committed
164
165

  user_input = tf.keras.layers.Input(
166
      shape=(1,), name=movielens.USER_COLUMN, dtype=tf.int32)
Shining Sun's avatar
Shining Sun committed
167
168

  item_input = tf.keras.layers.Input(
169
      shape=(1,), name=movielens.ITEM_COLUMN, dtype=tf.int32)
guptapriya's avatar
guptapriya committed
170

171
  valid_pt_mask_input = tf.keras.layers.Input(
172
      shape=(1,), name=rconst.VALID_POINT_MASK, dtype=tf.bool)
173
174

  dup_mask_input = tf.keras.layers.Input(
175
      shape=(1,), name=rconst.DUPLICATE_MASK, dtype=tf.int32)
176
177

  label_input = tf.keras.layers.Input(
178
      shape=(1,), name=rconst.TRAIN_LABEL_KEY, dtype=tf.bool)
Shining Sun's avatar
Shining Sun committed
179

180
  base_model = neumf_model.construct_model(user_input, item_input, params)
Shining Sun's avatar
Shining Sun committed
181

182
  logits = base_model.output
183

Shining Sun's avatar
Shining Sun committed
184
  zeros = tf.keras.layers.Lambda(
185
      lambda x: x * 0)(logits)
Shining Sun's avatar
Shining Sun committed
186
187

  softmax_logits = tf.keras.layers.concatenate(
188
      [zeros, logits],
Shining Sun's avatar
Shining Sun committed
189
190
      axis=-1)

191
192
  # Custom training loop calculates loss and metric as a part of
  # training/evaluation step function.
193
  if not params["keras_use_ctl"]:
Chen Chen's avatar
Chen Chen committed
194
195
    softmax_logits = MetricLayer(
        params["match_mlperf"])([softmax_logits, dup_mask_input])
196
197
198
199
    # TODO(b/134744680): Use model.add_loss() instead once the API is well
    # supported.
    softmax_logits = LossLayer(batch_size)(
        [softmax_logits, label_input, valid_pt_mask_input])
200

Shining Sun's avatar
Shining Sun committed
201
  keras_model = tf.keras.Model(
guptapriya's avatar
guptapriya committed
202
203
204
205
206
207
      inputs={
          movielens.USER_COLUMN: user_input,
          movielens.ITEM_COLUMN: item_input,
          rconst.VALID_POINT_MASK: valid_pt_mask_input,
          rconst.DUPLICATE_MASK: dup_mask_input,
          rconst.TRAIN_LABEL_KEY: label_input},
Shining Sun's avatar
Shining Sun committed
208
209
210
211
212
213
214
      outputs=softmax_logits)

  keras_model.summary()
  return keras_model


def run_ncf(_):
215
216
  """Run NCF training and eval with Keras."""

217
218
  keras_utils.set_session_config(enable_xla=FLAGS.enable_xla)

guptapriya's avatar
guptapriya committed
219
220
221
  if FLAGS.seed is not None:
    print("Setting tf seed")
    tf.random.set_seed(FLAGS.seed)
222

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
223
  model_helpers.apply_clean(FLAGS)
Shining Sun's avatar
Shining Sun committed
224

225
226
227
228
229
230
  if FLAGS.dtype == "fp16" and FLAGS.fp16_implementation == "keras":
    policy = tf.keras.mixed_precision.experimental.Policy(
        "mixed_float16",
        loss_scale=flags_core.get_loss_scale(FLAGS, default_for_fp16="dynamic"))
    tf.keras.mixed_precision.experimental.set_policy(policy)

231
232
  strategy = distribution_utils.get_distribution_strategy(
      distribution_strategy=FLAGS.distribution_strategy,
233
234
      num_gpus=FLAGS.num_gpus,
      tpu_address=FLAGS.tpu)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
235
236

  params = ncf_common.parse_flags(FLAGS)
237
238
  params["distribute_strategy"] = strategy

239
240
241
  if params["use_tpu"] and not params["keras_use_ctl"]:
    logging.error("Custom training loop must be used when using TPUStrategy.")
    return
242

243
  batch_size = params["batch_size"]
244
245
246
247
248
249
250
251
  time_callback = keras_utils.TimeHistory(batch_size, FLAGS.log_steps)
  callbacks = [time_callback]

  producer, input_meta_data = None, None
  generate_input_online = params["train_dataset_path"] is None

  if generate_input_online:
    # Start data producing thread.
252
    num_users, num_items, _, _, producer = ncf_common.get_inputs(params)
253
254
255
256
257
    producer.start()
    per_epoch_callback = IncrementEpochCallback(producer)
    callbacks.append(per_epoch_callback)
  else:
    assert params["eval_dataset_path"] and params["input_meta_data_path"]
258
    with tf.io.gfile.GFile(params["input_meta_data_path"], "rb") as reader:
259
260
261
      input_meta_data = json.loads(reader.read().decode("utf-8"))
      num_users = input_meta_data["num_users"]
      num_items = input_meta_data["num_items"]
Shining Sun's avatar
Shining Sun committed
262
263

  params["num_users"], params["num_items"] = num_users, num_items
264
265
266

  if FLAGS.early_stopping:
    early_stopping_callback = CustomEarlyStopping(
guptapriya's avatar
guptapriya committed
267
        "val_HR_METRIC", desired_value=FLAGS.hr_threshold)
268
    callbacks.append(early_stopping_callback)
269

270
271
272
273
274
275
276
277
278
279
280
281
282
  (train_input_dataset, eval_input_dataset,
   num_train_steps, num_eval_steps) = \
    (ncf_input_pipeline.create_ncf_input_data(
        params, producer, input_meta_data, strategy))
  steps_per_epoch = None if generate_input_online else num_train_steps

  with distribution_utils.get_strategy_scope(strategy):
    keras_model = _get_keras_model(params)
    optimizer = tf.keras.optimizers.Adam(
        learning_rate=params["learning_rate"],
        beta_1=params["beta1"],
        beta_2=params["beta2"],
        epsilon=params["epsilon"])
283
    if FLAGS.fp16_implementation == "graph_rewrite":
284
285
      optimizer = \
        tf.compat.v1.train.experimental.enable_mixed_precision_graph_rewrite(
286
            optimizer,
287
288
            loss_scale=flags_core.get_loss_scale(FLAGS,
                                                 default_for_fp16="dynamic"))
289
290
291
292
293
294
    elif FLAGS.dtype == "fp16" and params["keras_use_ctl"]:
      # When keras_use_ctl is False, instead Model.fit() automatically applies
      # loss scaling so we don't need to create a LossScaleOptimizer.
      optimizer = tf.keras.mixed_precision.experimental.LossScaleOptimizer(
          optimizer,
          tf.keras.mixed_precision.experimental.global_policy().loss_scale)
295
296
297
298
299
300
301
302
303
304
305
306
307
308

    if params["keras_use_ctl"]:
      train_loss, eval_results = run_ncf_custom_training(
          params,
          strategy,
          keras_model,
          optimizer,
          callbacks,
          train_input_dataset,
          eval_input_dataset,
          num_train_steps,
          num_eval_steps,
          generate_input_online=generate_input_online)
    else:
309
      keras_model.compile(optimizer=optimizer, run_eagerly=FLAGS.run_eagerly)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
310
311
312
313
314
315
316
317
318
319

      if not FLAGS.ml_perf:
        # Create Tensorboard summary and checkpoint callbacks.
        summary_dir = os.path.join(FLAGS.model_dir, "summaries")
        summary_callback = tf.keras.callbacks.TensorBoard(summary_dir)
        checkpoint_path = os.path.join(FLAGS.model_dir, "checkpoint")
        checkpoint_callback = tf.keras.callbacks.ModelCheckpoint(
            checkpoint_path, save_weights_only=True)

        callbacks += [summary_callback, checkpoint_callback]
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350

      history = keras_model.fit(
          train_input_dataset,
          epochs=FLAGS.train_epochs,
          steps_per_epoch=steps_per_epoch,
          callbacks=callbacks,
          validation_data=eval_input_dataset,
          validation_steps=num_eval_steps,
          verbose=2)

      logging.info("Training done. Start evaluating")

      eval_loss_and_metrics = keras_model.evaluate(
          eval_input_dataset, steps=num_eval_steps, verbose=2)

      logging.info("Keras evaluation is done.")

      # Keras evaluate() API returns scalar loss and metric values from
      # evaluation as a list. Here, the returned list would contain
      # [evaluation loss, hr sum, hr count].
      eval_hit_rate = eval_loss_and_metrics[1] / eval_loss_and_metrics[2]

      # Format evaluation result into [eval loss, eval hit accuracy].
      eval_results = [eval_loss_and_metrics[0], eval_hit_rate]

      if history and history.history:
        train_history = history.history
        train_loss = train_history["loss"][-1]

  stats = build_stats(train_loss, eval_results, time_callback)
  return stats
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385


def run_ncf_custom_training(params,
                            strategy,
                            keras_model,
                            optimizer,
                            callbacks,
                            train_input_dataset,
                            eval_input_dataset,
                            num_train_steps,
                            num_eval_steps,
                            generate_input_online=True):
  """Runs custom training loop.

  Args:
    params: Dictionary containing training parameters.
    strategy: Distribution strategy to be used for distributed training.
    keras_model: Model used for training.
    optimizer: Optimizer used for training.
    callbacks: Callbacks to be invoked between batches/epochs.
    train_input_dataset: tf.data.Dataset used for training.
    eval_input_dataset: tf.data.Dataset used for evaluation.
    num_train_steps: Total number of steps to run for training.
    num_eval_steps: Total number of steps to run for evaluation.
    generate_input_online: Whether input data was generated by data producer.
      When data is generated by data producer, then train dataset must be
      re-initialized after every epoch.

  Returns:
    A tuple of train loss and a list of training and evaluation results.
  """
  loss_object = tf.keras.losses.SparseCategoricalCrossentropy(
      reduction="sum", from_logits=True)
  train_input_iterator = iter(
      strategy.experimental_distribute_dataset(train_input_dataset))
386

387
388
  def train_step(train_iterator):
    """Called once per step to train the model."""
389

390
391
392
393
    def step_fn(features):
      """Computes loss and applied gradient per replica."""
      with tf.GradientTape() as tape:
        softmax_logits = keras_model(features)
394
395
        # The loss can overflow in float16, so we cast to float32.
        softmax_logits = tf.cast(softmax_logits, "float32")
396
397
398
399
400
401
        labels = features[rconst.TRAIN_LABEL_KEY]
        loss = loss_object(
            labels,
            softmax_logits,
            sample_weight=features[rconst.VALID_POINT_MASK])
        loss *= (1.0 / params["batch_size"])
Nimit Nigania's avatar
Nimit Nigania committed
402
403
        if FLAGS.dtype == "fp16":
          loss = optimizer.get_scaled_loss(loss)
404
405

      grads = tape.gradient(loss, keras_model.trainable_variables)
Nimit Nigania's avatar
Nimit Nigania committed
406
407
      if FLAGS.dtype == "fp16":
        grads = optimizer.get_unscaled_gradients(grads)
408
409
410
411
412
413
      # Converting gradients to dense form helps in perf on GPU for NCF
      grads = neumf_model.sparse_to_dense_grads(
          list(zip(grads, keras_model.trainable_variables)))
      optimizer.apply_gradients(grads)
      return loss

Ken Franko's avatar
Ken Franko committed
414
    per_replica_losses = strategy.run(
415
416
417
418
419
420
421
422
423
424
425
426
427
        step_fn, args=(next(train_iterator),))
    mean_loss = strategy.reduce(
        tf.distribute.ReduceOp.SUM, per_replica_losses, axis=None)
    return mean_loss

  def eval_step(eval_iterator):
    """Called once per eval step to compute eval metrics."""

    def step_fn(features):
      """Computes eval metrics per replica."""
      softmax_logits = keras_model(features)
      in_top_k, metric_weights = metric_fn(softmax_logits,
                                           features[rconst.DUPLICATE_MASK],
428
                                           params["match_mlperf"])
429
430
431
      hr_sum = tf.reduce_sum(in_top_k * metric_weights)
      hr_count = tf.reduce_sum(metric_weights)
      return hr_sum, hr_count
432

433
    per_replica_hr_sum, per_replica_hr_count = (
Ken Franko's avatar
Ken Franko committed
434
        strategy.run(
435
436
437
438
439
440
            step_fn, args=(next(eval_iterator),)))
    hr_sum = strategy.reduce(
        tf.distribute.ReduceOp.SUM, per_replica_hr_sum, axis=None)
    hr_count = strategy.reduce(
        tf.distribute.ReduceOp.SUM, per_replica_hr_count, axis=None)
    return hr_sum, hr_count
441

442
443
444
  if not FLAGS.run_eagerly:
    train_step = tf.function(train_step)
    eval_step = tf.function(eval_step)
445

446
447
  for callback in callbacks:
    callback.on_train_begin()
448

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
449
450
451
452
453
454
455
456
457
458
  # Not writing tensorboard summaries if running in MLPerf.
  if FLAGS.ml_perf:
    eval_summary_writer, train_summary_writer = None, None
  else:
    summary_dir = os.path.join(FLAGS.model_dir, "summaries")
    eval_summary_writer = tf.summary.create_file_writer(
        os.path.join(summary_dir, "eval"))
    train_summary_writer = tf.summary.create_file_writer(
        os.path.join(summary_dir, "train"))

459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
  train_loss = 0
  for epoch in range(FLAGS.train_epochs):
    for cb in callbacks:
      cb.on_epoch_begin(epoch)

    # As NCF dataset is sampled with randomness, not repeating
    # data elements in each epoch has significant impact on
    # convergence. As so, offline-generated TF record files
    # contains all epoch worth of data. Thus we do not need
    # to initialize dataset when reading from tf record files.
    if generate_input_online:
      train_input_iterator = iter(
          strategy.experimental_distribute_dataset(train_input_dataset))

    train_loss = 0
    for step in range(num_train_steps):
      current_step = step + epoch * num_train_steps
      for c in callbacks:
        c.on_batch_begin(current_step)

      train_loss += train_step(train_input_iterator)

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
481
482
      # Write train loss once in every 1000 steps.
      if train_summary_writer and step % 1000 == 0:
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
483
484
485
486
        with train_summary_writer.as_default():
          tf.summary.scalar("training_loss", train_loss/(step + 1),
                            step=current_step)

487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
      for c in callbacks:
        c.on_batch_end(current_step)

    train_loss /= num_train_steps
    logging.info("Done training epoch %s, epoch loss=%s.", epoch + 1,
                 train_loss)

    eval_input_iterator = iter(
        strategy.experimental_distribute_dataset(eval_input_dataset))
    hr_sum = 0
    hr_count = 0
    for _ in range(num_eval_steps):
      step_hr_sum, step_hr_count = eval_step(eval_input_iterator)
      hr_sum += step_hr_sum
      hr_count += step_hr_count

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
503
504
505
506
507
    logging.info("Done eval epoch %s, hit_rate=%s.", epoch + 1,
                 hr_sum / hr_count)
    if eval_summary_writer:
      with eval_summary_writer.as_default():
        tf.summary.scalar("hit_rate", hr_sum / hr_count, step=current_step)
508
509
510
511
512
513
514
515

    if (FLAGS.early_stopping and
        float(hr_sum / hr_count) > params["hr_threshold"]):
      break

  for c in callbacks:
    c.on_train_end()

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
516
517
518
519
520
521
522
  # Saving the model at the end of training.
  if not FLAGS.ml_perf:
    checkpoint = tf.train.Checkpoint(model=keras_model, optimizer=optimizer)
    checkpoint_path = os.path.join(FLAGS.model_dir, "ctl_checkpoint")
    checkpoint.save(checkpoint_path)
    logging.info("Saving model as TF checkpoint: %s", checkpoint_path)

523
  return train_loss, [None, hr_sum / hr_count]
524
525


526
def build_stats(loss, eval_result, time_callback):
527
528
  """Normalizes and returns dictionary of stats.

Haoyu Zhang's avatar
Haoyu Zhang committed
529
530
531
532
533
534
535
536
  Args:
    loss: The final loss at training time.
    eval_result: Output of the eval step. Assumes first value is eval_loss and
      second value is accuracy_top_1.
    time_callback: Time tracking callback likely used during keras.fit.

  Returns:
    Dictionary of normalized results.
537
538
  """
  stats = {}
539
  if loss:
Haoyu Zhang's avatar
Haoyu Zhang committed
540
    stats["loss"] = loss
541
542

  if eval_result:
Haoyu Zhang's avatar
Haoyu Zhang committed
543
544
    stats["eval_loss"] = eval_result[0]
    stats["eval_hit_rate"] = eval_result[1]
545
546
547

  if time_callback:
    timestamp_log = time_callback.timestamp_log
Haoyu Zhang's avatar
Haoyu Zhang committed
548
549
    stats["step_timestamp_log"] = timestamp_log
    stats["train_finish_time"] = time_callback.train_finish_time
550
    if len(timestamp_log) > 1:
Haoyu Zhang's avatar
Haoyu Zhang committed
551
      stats["avg_exp_per_second"] = (
552
553
554
555
556
          time_callback.batch_size * time_callback.log_steps *
          (len(time_callback.timestamp_log)-1) /
          (timestamp_log[-1].timestamp - timestamp_log[0].timestamp))

  return stats
Shining Sun's avatar
Shining Sun committed
557
558
559


def main(_):
560
  logging.info("Result is %s", run_ncf(FLAGS))
Shining Sun's avatar
Shining Sun committed
561
562
563
564


if __name__ == "__main__":
  ncf_common.define_ncf_flags()
David Chen's avatar
David Chen committed
565
  app.run(main)