"3rdparty/googletest-1.13.0/docs/reference/assertions.md" did not exist on "e38ee081a0495769e25766b894abe19bc8a6209e"
heads.py 48.7 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Classes to build various prediction heads in all supported models."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

Yeqing Li's avatar
Yeqing Li committed
21
import functools
22
23

import numpy as np
24
import tensorflow as tf
25
26

from official.vision.detection.modeling.architecture import keras_utils
27
from official.vision.detection.modeling.architecture import nn_ops
28
from official.vision.detection.ops import spatial_transform_ops
29
30


Yeqing Li's avatar
Yeqing Li committed
31
class RpnHead(tf.keras.layers.Layer):
32
33
  """Region Proposal Network head."""

Hongkun Yu's avatar
Hongkun Yu committed
34
35
36
37
38
39
40
41
42
43
44
  def __init__(
      self,
      min_level,
      max_level,
      anchors_per_location,
      num_convs=2,
      num_filters=256,
      use_separable_conv=False,
      activation='relu',
      use_batch_norm=True,
      norm_activation=nn_ops.norm_activation_builder(activation='relu')):
45
46
47
48
49
50
51
    """Initialize params to build Region Proposal Network head.

    Args:
      min_level: `int` number of minimum feature level.
      max_level: `int` number of maximum feature level.
      anchors_per_location: `int` number of number of anchors per pixel
        location.
Yeqing Li's avatar
Yeqing Li committed
52
53
54
55
56
57
      num_convs: `int` number that represents the number of the intermediate
        conv layers before the prediction.
      num_filters: `int` number that represents the number of filters of the
        intermediate conv layers.
      use_separable_conv: `bool`, indicating whether the separable conv layers
        is used.
58
      activation: activation function. Support 'relu' and 'swish'.
Yeqing Li's avatar
Yeqing Li committed
59
      use_batch_norm: 'bool', indicating whether batchnorm layers are added.
Hongkun Yu's avatar
Hongkun Yu committed
60
61
      norm_activation: an operation that includes a normalization layer followed
        by an optional activation layer.
62
63
64
65
    """
    self._min_level = min_level
    self._max_level = max_level
    self._anchors_per_location = anchors_per_location
Pengchong Jin's avatar
Pengchong Jin committed
66
67
68
69
70
71
    if activation == 'relu':
      self._activation_op = tf.nn.relu
    elif activation == 'swish':
      self._activation_op = tf.nn.swish
    else:
      raise ValueError('Unsupported activation `{}`.'.format(activation))
Yeqing Li's avatar
Yeqing Li committed
72
73
74
75
76
77
78
79
80
81
82
83
84
    self._use_batch_norm = use_batch_norm

    if use_separable_conv:
      self._conv2d_op = functools.partial(
          tf.keras.layers.SeparableConv2D,
          depth_multiplier=1,
          bias_initializer=tf.zeros_initializer())
    else:
      self._conv2d_op = functools.partial(
          tf.keras.layers.Conv2D,
          kernel_initializer=tf.keras.initializers.RandomNormal(stddev=0.01),
          bias_initializer=tf.zeros_initializer())

Yeqing Li's avatar
Yeqing Li committed
85
    self._rpn_conv = self._conv2d_op(
Yeqing Li's avatar
Yeqing Li committed
86
        num_filters,
87
88
        kernel_size=(3, 3),
        strides=(1, 1),
Pengchong Jin's avatar
Pengchong Jin committed
89
        activation=(None if self._use_batch_norm else self._activation_op),
90
91
        padding='same',
        name='rpn')
Yeqing Li's avatar
Yeqing Li committed
92
    self._rpn_class_conv = self._conv2d_op(
93
94
95
96
97
        anchors_per_location,
        kernel_size=(1, 1),
        strides=(1, 1),
        padding='valid',
        name='rpn-class')
Yeqing Li's avatar
Yeqing Li committed
98
    self._rpn_box_conv = self._conv2d_op(
99
100
101
102
103
        4 * anchors_per_location,
        kernel_size=(1, 1),
        strides=(1, 1),
        padding='valid',
        name='rpn-box')
Yeqing Li's avatar
Yeqing Li committed
104

Pengchong Jin's avatar
Pengchong Jin committed
105
    self._norm_activations = {}
Yeqing Li's avatar
Yeqing Li committed
106
107
    if self._use_batch_norm:
      for level in range(self._min_level, self._max_level + 1):
Pengchong Jin's avatar
Pengchong Jin committed
108
        self._norm_activations[level] = norm_activation(name='rpn-l%d-bn' %
Yeqing Li's avatar
Yeqing Li committed
109
                                                        level)
110
111
112
113
114

  def _shared_rpn_heads(self, features, anchors_per_location, level,
                        is_training):
    """Shared RPN heads."""
    features = self._rpn_conv(features)
Yeqing Li's avatar
Yeqing Li committed
115
116
    if self._use_batch_norm:
      # The batch normalization layers are not shared between levels.
Pengchong Jin's avatar
Pengchong Jin committed
117
      features = self._norm_activations[level](
Yeqing Li's avatar
Yeqing Li committed
118
          features, is_training=is_training)
119
120
121
122
123
124
125
126
127
128
129
130
    # Proposal classification scores
    scores = self._rpn_class_conv(features)
    # Proposal bbox regression deltas
    bboxes = self._rpn_box_conv(features)

    return scores, bboxes

  def __call__(self, features, is_training=None):

    scores_outputs = {}
    box_outputs = {}

131
    with keras_utils.maybe_enter_backend_graph(), tf.name_scope('rpn_head'):
132
133
134
135
136
137
138
139
      for level in range(self._min_level, self._max_level + 1):
        scores_output, box_output = self._shared_rpn_heads(
            features[level], self._anchors_per_location, level, is_training)
        scores_outputs[level] = scores_output
        box_outputs[level] = box_output
      return scores_outputs, box_outputs


A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
class OlnRpnHead(tf.keras.layers.Layer):
  """Region Proposal Network for Object Localization Network (OLN)."""

  def __init__(
      self,
      min_level,
      max_level,
      anchors_per_location,
      num_convs=2,
      num_filters=256,
      use_separable_conv=False,
      activation='relu',
      use_batch_norm=True,
      norm_activation=nn_ops.norm_activation_builder(activation='relu')):
    """Initialize params to build Region Proposal Network head.

    Args:
      min_level: `int` number of minimum feature level.
      max_level: `int` number of maximum feature level.
      anchors_per_location: `int` number of number of anchors per pixel
        location.
      num_convs: `int` number that represents the number of the intermediate
        conv layers before the prediction.
      num_filters: `int` number that represents the number of filters of the
        intermediate conv layers.
      use_separable_conv: `bool`, indicating whether the separable conv layers
        is used.
      activation: activation function. Support 'relu' and 'swish'.
      use_batch_norm: 'bool', indicating whether batchnorm layers are added.
      norm_activation: an operation that includes a normalization layer followed
        by an optional activation layer.
    """
    self._min_level = min_level
    self._max_level = max_level
    self._anchors_per_location = anchors_per_location
    if activation == 'relu':
      self._activation_op = tf.nn.relu
    elif activation == 'swish':
      self._activation_op = tf.nn.swish
    else:
      raise ValueError('Unsupported activation `{}`.'.format(activation))
    self._use_batch_norm = use_batch_norm

    if use_separable_conv:
      self._conv2d_op = functools.partial(
          tf.keras.layers.SeparableConv2D,
          depth_multiplier=1,
          bias_initializer=tf.zeros_initializer())
    else:
      self._conv2d_op = functools.partial(
          tf.keras.layers.Conv2D,
          kernel_initializer=tf.keras.initializers.RandomNormal(stddev=0.01),
          bias_initializer=tf.zeros_initializer())

    self._rpn_conv = self._conv2d_op(
        num_filters,
        kernel_size=(3, 3),
        strides=(1, 1),
        activation=(None if self._use_batch_norm else self._activation_op),
        padding='same',
        name='rpn')
    self._rpn_class_conv = self._conv2d_op(
        anchors_per_location,
        kernel_size=(1, 1),
        strides=(1, 1),
        padding='valid',
        name='rpn-class')
    self._rpn_box_conv = self._conv2d_op(
        4 * anchors_per_location,
        kernel_size=(1, 1),
        strides=(1, 1),
        padding='valid',
        name='rpn-box-lrtb')
    self._rpn_center_conv = self._conv2d_op(
        anchors_per_location,
        kernel_size=(1, 1),
        strides=(1, 1),
        padding='valid',
        name='rpn-centerness')

    self._norm_activations = {}
    if self._use_batch_norm:
      for level in range(self._min_level, self._max_level + 1):
        self._norm_activations[level] = norm_activation(name='rpn-l%d-bn' %
                                                        level)

  def _shared_rpn_heads(self, features, anchors_per_location, level,
                        is_training):
    """Shared RPN heads."""
    features = self._rpn_conv(features)
    if self._use_batch_norm:
      # The batch normalization layers are not shared between levels.
      features = self._norm_activations[level](
          features, is_training=is_training)
    # Feature L2 normalization for training stability
    features = tf.math.l2_normalize(
        features,
        axis=-1,
        name='rpn-norm',)
    # Proposal classification scores
    scores = self._rpn_class_conv(features)
    # Proposal bbox regression deltas
    bboxes = self._rpn_box_conv(features)
    # Proposal centerness scores
    centers = self._rpn_center_conv(features)

    return scores, bboxes, centers

  def __call__(self, features, is_training=None):

    scores_outputs = {}
    box_outputs = {}
    center_outputs = {}

    with keras_utils.maybe_enter_backend_graph(), tf.name_scope('rpn_head'):
      for level in range(self._min_level, self._max_level + 1):
        scores_output, box_output, center_output = self._shared_rpn_heads(
            features[level], self._anchors_per_location, level, is_training)
        scores_outputs[level] = scores_output
        box_outputs[level] = box_output
        center_outputs[level] = center_output
      return scores_outputs, box_outputs, center_outputs


Yeqing Li's avatar
Yeqing Li committed
264
class FastrcnnHead(tf.keras.layers.Layer):
265
266
  """Fast R-CNN box head."""

Hongkun Yu's avatar
Hongkun Yu committed
267
268
269
270
271
272
273
274
275
276
277
  def __init__(
      self,
      num_classes,
      num_convs=0,
      num_filters=256,
      use_separable_conv=False,
      num_fcs=2,
      fc_dims=1024,
      activation='relu',
      use_batch_norm=True,
      norm_activation=nn_ops.norm_activation_builder(activation='relu')):
278
279
280
281
    """Initialize params to build Fast R-CNN box head.

    Args:
      num_classes: a integer for the number of classes.
Yeqing Li's avatar
Yeqing Li committed
282
283
284
285
286
287
288
289
290
291
      num_convs: `int` number that represents the number of the intermediate
        conv layers before the FC layers.
      num_filters: `int` number that represents the number of filters of the
        intermediate conv layers.
      use_separable_conv: `bool`, indicating whether the separable conv layers
        is used.
      num_fcs: `int` number that represents the number of FC layers before the
        predictions.
      fc_dims: `int` number that represents the number of dimension of the FC
        layers.
292
      activation: activation function. Support 'relu' and 'swish'.
Yeqing Li's avatar
Yeqing Li committed
293
      use_batch_norm: 'bool', indicating whether batchnorm layers are added.
Hongkun Yu's avatar
Hongkun Yu committed
294
295
      norm_activation: an operation that includes a normalization layer followed
        by an optional activation layer.
296
297
    """
    self._num_classes = num_classes
Yeqing Li's avatar
Yeqing Li committed
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314

    self._num_convs = num_convs
    self._num_filters = num_filters
    if use_separable_conv:
      self._conv2d_op = functools.partial(
          tf.keras.layers.SeparableConv2D,
          depth_multiplier=1,
          bias_initializer=tf.zeros_initializer())
    else:
      self._conv2d_op = functools.partial(
          tf.keras.layers.Conv2D,
          kernel_initializer=tf.keras.initializers.VarianceScaling(
              scale=2, mode='fan_out', distribution='untruncated_normal'),
          bias_initializer=tf.zeros_initializer())

    self._num_fcs = num_fcs
    self._fc_dims = fc_dims
Pengchong Jin's avatar
Pengchong Jin committed
315
316
317
318
319
320
    if activation == 'relu':
      self._activation_op = tf.nn.relu
    elif activation == 'swish':
      self._activation_op = tf.nn.swish
    else:
      raise ValueError('Unsupported activation `{}`.'.format(activation))
Yeqing Li's avatar
Yeqing Li committed
321
    self._use_batch_norm = use_batch_norm
Pengchong Jin's avatar
Pengchong Jin committed
322
    self._norm_activation = norm_activation
323

Yeqing Li's avatar
Yeqing Li committed
324
325
326
327
328
329
330
331
332
333
    self._conv_ops = []
    self._conv_bn_ops = []
    for i in range(self._num_convs):
      self._conv_ops.append(
          self._conv2d_op(
              self._num_filters,
              kernel_size=(3, 3),
              strides=(1, 1),
              padding='same',
              dilation_rate=(1, 1),
Hongkun Yu's avatar
Hongkun Yu committed
334
335
              activation=(None
                          if self._use_batch_norm else self._activation_op),
Yeqing Li's avatar
Yeqing Li committed
336
337
              name='conv_{}'.format(i)))
      if self._use_batch_norm:
Pengchong Jin's avatar
Pengchong Jin committed
338
        self._conv_bn_ops.append(self._norm_activation())
Yeqing Li's avatar
Yeqing Li committed
339
340
341
342
343
344
345

    self._fc_ops = []
    self._fc_bn_ops = []
    for i in range(self._num_fcs):
      self._fc_ops.append(
          tf.keras.layers.Dense(
              units=self._fc_dims,
Hongkun Yu's avatar
Hongkun Yu committed
346
347
              activation=(None
                          if self._use_batch_norm else self._activation_op),
Yeqing Li's avatar
Yeqing Li committed
348
349
              name='fc{}'.format(i)))
      if self._use_batch_norm:
Pengchong Jin's avatar
Pengchong Jin committed
350
        self._fc_bn_ops.append(self._norm_activation(fused=False))
Yeqing Li's avatar
Yeqing Li committed
351
352
353
354
355
356
357
358
359
360
361
362

    self._class_predict = tf.keras.layers.Dense(
        self._num_classes,
        kernel_initializer=tf.keras.initializers.RandomNormal(stddev=0.01),
        bias_initializer=tf.zeros_initializer(),
        name='class-predict')
    self._box_predict = tf.keras.layers.Dense(
        self._num_classes * 4,
        kernel_initializer=tf.keras.initializers.RandomNormal(stddev=0.001),
        bias_initializer=tf.zeros_initializer(),
        name='box-predict')

363
364
365
366
  def __call__(self, roi_features, is_training=None):
    """Box and class branches for the Mask-RCNN model.

    Args:
Hongkun Yu's avatar
Hongkun Yu committed
367
368
      roi_features: A ROI feature tensor of shape [batch_size, num_rois,
        height_l, width_l, num_filters].
369
370
371
372
373
374
375
376
377
378
      is_training: `boolean`, if True if model is in training mode.

    Returns:
      class_outputs: a tensor with a shape of
        [batch_size, num_rois, num_classes], representing the class predictions.
      box_outputs: a tensor with a shape of
        [batch_size, num_rois, num_classes * 4], representing the box
        predictions.
    """

379
380
    with keras_utils.maybe_enter_backend_graph(), tf.name_scope(
        'fast_rcnn_head'):
381
382
      # reshape inputs beofre FC.
      _, num_rois, height, width, filters = roi_features.get_shape().as_list()
Yeqing Li's avatar
Yeqing Li committed
383
384
385

      net = tf.reshape(roi_features, [-1, height, width, filters])
      for i in range(self._num_convs):
Yeqing Li's avatar
Yeqing Li committed
386
        net = self._conv_ops[i](net)
Yeqing Li's avatar
Yeqing Li committed
387
        if self._use_batch_norm:
Yeqing Li's avatar
Yeqing Li committed
388
          net = self._conv_bn_ops[i](net, is_training=is_training)
Yeqing Li's avatar
Yeqing Li committed
389
390
391
392
393

      filters = self._num_filters if self._num_convs > 0 else filters
      net = tf.reshape(net, [-1, num_rois, height * width * filters])

      for i in range(self._num_fcs):
Yeqing Li's avatar
Yeqing Li committed
394
        net = self._fc_ops[i](net)
Yeqing Li's avatar
Yeqing Li committed
395
        if self._use_batch_norm:
Yeqing Li's avatar
Yeqing Li committed
396
          net = self._fc_bn_ops[i](net, is_training=is_training)
397

Yeqing Li's avatar
Yeqing Li committed
398
399
      class_outputs = self._class_predict(net)
      box_outputs = self._box_predict(net)
400
401
402
      return class_outputs, box_outputs


A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
class OlnBoxScoreHead(tf.keras.layers.Layer):
  """Box head of Object Localization Network (OLN)."""

  def __init__(
      self,
      num_classes,
      num_convs=0,
      num_filters=256,
      use_separable_conv=False,
      num_fcs=2,
      fc_dims=1024,
      activation='relu',
      use_batch_norm=True,
      norm_activation=nn_ops.norm_activation_builder(activation='relu')):
    """Initialize params to build OLN box head.

    Args:
      num_classes: a integer for the number of classes.
      num_convs: `int` number that represents the number of the intermediate
        conv layers before the FC layers.
      num_filters: `int` number that represents the number of filters of the
        intermediate conv layers.
      use_separable_conv: `bool`, indicating whether the separable conv layers
        is used.
      num_fcs: `int` number that represents the number of FC layers before the
        predictions.
      fc_dims: `int` number that represents the number of dimension of the FC
        layers.
      activation: activation function. Support 'relu' and 'swish'.
      use_batch_norm: 'bool', indicating whether batchnorm layers are added.
      norm_activation: an operation that includes a normalization layer followed
        by an optional activation layer.
    """
    self._num_classes = num_classes

    self._num_convs = num_convs
    self._num_filters = num_filters
    if use_separable_conv:
      self._conv2d_op = functools.partial(
          tf.keras.layers.SeparableConv2D,
          depth_multiplier=1,
          bias_initializer=tf.zeros_initializer())
    else:
      self._conv2d_op = functools.partial(
          tf.keras.layers.Conv2D,
          kernel_initializer=tf.keras.initializers.VarianceScaling(
              scale=2, mode='fan_out', distribution='untruncated_normal'),
          bias_initializer=tf.zeros_initializer())

    self._num_fcs = num_fcs
    self._fc_dims = fc_dims
    if activation == 'relu':
      self._activation_op = tf.nn.relu
    elif activation == 'swish':
      self._activation_op = tf.nn.swish
    else:
      raise ValueError('Unsupported activation `{}`.'.format(activation))
    self._use_batch_norm = use_batch_norm
    self._norm_activation = norm_activation

    self._conv_ops = []
    self._conv_bn_ops = []
    for i in range(self._num_convs):
      self._conv_ops.append(
          self._conv2d_op(
              self._num_filters,
              kernel_size=(3, 3),
              strides=(1, 1),
              padding='same',
              dilation_rate=(1, 1),
              activation=(None
                          if self._use_batch_norm else self._activation_op),
              name='conv_{}'.format(i)))
      if self._use_batch_norm:
        self._conv_bn_ops.append(self._norm_activation())

    self._fc_ops = []
    self._fc_bn_ops = []
    for i in range(self._num_fcs):
      self._fc_ops.append(
          tf.keras.layers.Dense(
              units=self._fc_dims,
              activation=(None
                          if self._use_batch_norm else self._activation_op),
              name='fc{}'.format(i)))
      if self._use_batch_norm:
        self._fc_bn_ops.append(self._norm_activation(fused=False))

    self._class_predict = tf.keras.layers.Dense(
        self._num_classes,
        kernel_initializer=tf.keras.initializers.RandomNormal(stddev=0.01),
        bias_initializer=tf.zeros_initializer(),
        name='class-predict')
    self._box_predict = tf.keras.layers.Dense(
        self._num_classes * 4,
        kernel_initializer=tf.keras.initializers.RandomNormal(stddev=0.001),
        bias_initializer=tf.zeros_initializer(),
        name='box-predict')
    self._score_predict = tf.keras.layers.Dense(
        1,
        kernel_initializer=tf.keras.initializers.RandomNormal(stddev=0.01),
        bias_initializer=tf.zeros_initializer(),
        name='score-predict')

  def __call__(self, roi_features, is_training=None):
    """Box and class branches for the Mask-RCNN model.

    Args:
      roi_features: A ROI feature tensor of shape [batch_size, num_rois,
        height_l, width_l, num_filters].
      is_training: `boolean`, if True if model is in training mode.

    Returns:
      class_outputs: a tensor with a shape of
        [batch_size, num_rois, num_classes], representing the class predictions.
      box_outputs: a tensor with a shape of
        [batch_size, num_rois, num_classes * 4], representing the box
        predictions.
    """

    with keras_utils.maybe_enter_backend_graph(), tf.name_scope(
        'fast_rcnn_head'):
      # reshape inputs beofre FC.
      _, num_rois, height, width, filters = roi_features.get_shape().as_list()

      net = tf.reshape(roi_features, [-1, height, width, filters])
      for i in range(self._num_convs):
        net = self._conv_ops[i](net)
        if self._use_batch_norm:
          net = self._conv_bn_ops[i](net, is_training=is_training)

      filters = self._num_filters if self._num_convs > 0 else filters
      net = tf.reshape(net, [-1, num_rois, height * width * filters])

      for i in range(self._num_fcs):
        net = self._fc_ops[i](net)
        if self._use_batch_norm:
          net = self._fc_bn_ops[i](net, is_training=is_training)

      class_outputs = self._class_predict(net)
      box_outputs = self._box_predict(net)
      score_outputs = self._score_predict(net)
      return class_outputs, box_outputs, score_outputs


Yeqing Li's avatar
Yeqing Li committed
548
class MaskrcnnHead(tf.keras.layers.Layer):
549
550
  """Mask R-CNN head."""

Hongkun Yu's avatar
Hongkun Yu committed
551
552
553
554
555
556
557
558
559
560
  def __init__(
      self,
      num_classes,
      mask_target_size,
      num_convs=4,
      num_filters=256,
      use_separable_conv=False,
      activation='relu',
      use_batch_norm=True,
      norm_activation=nn_ops.norm_activation_builder(activation='relu')):
561
562
563
564
    """Initialize params to build Fast R-CNN head.

    Args:
      num_classes: a integer for the number of classes.
Pengchong Jin's avatar
Pengchong Jin committed
565
      mask_target_size: a integer that is the resolution of masks.
Yeqing Li's avatar
Yeqing Li committed
566
567
568
569
570
571
      num_convs: `int` number that represents the number of the intermediate
        conv layers before the prediction.
      num_filters: `int` number that represents the number of filters of the
        intermediate conv layers.
      use_separable_conv: `bool`, indicating whether the separable conv layers
        is used.
572
      activation: activation function. Support 'relu' and 'swish'.
Yeqing Li's avatar
Yeqing Li committed
573
      use_batch_norm: 'bool', indicating whether batchnorm layers are added.
Hongkun Yu's avatar
Hongkun Yu committed
574
575
      norm_activation: an operation that includes a normalization layer followed
        by an optional activation layer.
576
577
    """
    self._num_classes = num_classes
Pengchong Jin's avatar
Pengchong Jin committed
578
    self._mask_target_size = mask_target_size
Yeqing Li's avatar
Yeqing Li committed
579
580
581
582
583
584
585
586
587
588
589
590
591
592

    self._num_convs = num_convs
    self._num_filters = num_filters
    if use_separable_conv:
      self._conv2d_op = functools.partial(
          tf.keras.layers.SeparableConv2D,
          depth_multiplier=1,
          bias_initializer=tf.zeros_initializer())
    else:
      self._conv2d_op = functools.partial(
          tf.keras.layers.Conv2D,
          kernel_initializer=tf.keras.initializers.VarianceScaling(
              scale=2, mode='fan_out', distribution='untruncated_normal'),
          bias_initializer=tf.zeros_initializer())
Pengchong Jin's avatar
Pengchong Jin committed
593
594
595
596
597
598
    if activation == 'relu':
      self._activation_op = tf.nn.relu
    elif activation == 'swish':
      self._activation_op = tf.nn.swish
    else:
      raise ValueError('Unsupported activation `{}`.'.format(activation))
Yeqing Li's avatar
Yeqing Li committed
599
    self._use_batch_norm = use_batch_norm
Pengchong Jin's avatar
Pengchong Jin committed
600
    self._norm_activation = norm_activation
Yeqing Li's avatar
Yeqing Li committed
601
602
603
604
605
606
607
608
609
    self._conv2d_ops = []
    for i in range(self._num_convs):
      self._conv2d_ops.append(
          self._conv2d_op(
              self._num_filters,
              kernel_size=(3, 3),
              strides=(1, 1),
              padding='same',
              dilation_rate=(1, 1),
Hongkun Yu's avatar
Hongkun Yu committed
610
611
              activation=(None
                          if self._use_batch_norm else self._activation_op),
Yeqing Li's avatar
Yeqing Li committed
612
613
614
615
616
617
              name='mask-conv-l%d' % i))
    self._mask_conv_transpose = tf.keras.layers.Conv2DTranspose(
        self._num_filters,
        kernel_size=(2, 2),
        strides=(2, 2),
        padding='valid',
Pengchong Jin's avatar
Pengchong Jin committed
618
        activation=(None if self._use_batch_norm else self._activation_op),
Yeqing Li's avatar
Yeqing Li committed
619
620
621
622
        kernel_initializer=tf.keras.initializers.VarianceScaling(
            scale=2, mode='fan_out', distribution='untruncated_normal'),
        bias_initializer=tf.zeros_initializer(),
        name='conv5-mask')
623
624
625
626
627

  def __call__(self, roi_features, class_indices, is_training=None):
    """Mask branch for the Mask-RCNN model.

    Args:
Hongkun Yu's avatar
Hongkun Yu committed
628
629
630
631
      roi_features: A ROI feature tensor of shape [batch_size, num_rois,
        height_l, width_l, num_filters].
      class_indices: a Tensor of shape [batch_size, num_rois], indicating which
        class the ROI is.
632
      is_training: `boolean`, if True if model is in training mode.
Yeqing Li's avatar
Yeqing Li committed
633

634
635
636
637
638
639
640
641
642
643
644
    Returns:
      mask_outputs: a tensor with a shape of
        [batch_size, num_masks, mask_height, mask_width, num_classes],
        representing the mask predictions.
      fg_gather_indices: a tensor with a shape of [batch_size, num_masks, 2],
        representing the fg mask targets.
    Raises:
      ValueError: If boxes is not a rank-3 tensor or the last dimension of
        boxes is not 4.
    """

645
    with keras_utils.maybe_enter_backend_graph():
646
647
648
649
      with tf.name_scope('mask_head'):
        _, num_rois, height, width, filters = roi_features.get_shape().as_list()
        net = tf.reshape(roi_features, [-1, height, width, filters])

Yeqing Li's avatar
Yeqing Li committed
650
        for i in range(self._num_convs):
Yeqing Li's avatar
Yeqing Li committed
651
          net = self._conv2d_ops[i](net)
Yeqing Li's avatar
Yeqing Li committed
652
          if self._use_batch_norm:
Pengchong Jin's avatar
Pengchong Jin committed
653
            net = self._norm_activation()(net, is_training=is_training)
654

Yeqing Li's avatar
Yeqing Li committed
655
        net = self._mask_conv_transpose(net)
Yeqing Li's avatar
Yeqing Li committed
656
        if self._use_batch_norm:
Pengchong Jin's avatar
Pengchong Jin committed
657
          net = self._norm_activation()(net, is_training=is_training)
Yeqing Li's avatar
Yeqing Li committed
658
659
660
661

        mask_outputs = self._conv2d_op(
            self._num_classes,
            kernel_size=(1, 1),
662
663
664
665
666
            strides=(1, 1),
            padding='valid',
            name='mask_fcn_logits')(
                net)
        mask_outputs = tf.reshape(mask_outputs, [
Pengchong Jin's avatar
Pengchong Jin committed
667
            -1, num_rois, self._mask_target_size, self._mask_target_size,
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
            self._num_classes
        ])

        with tf.name_scope('masks_post_processing'):
          # TODO(pengchong): Figure out the way not to use the static inferred
          # batch size.
          batch_size, num_masks = class_indices.get_shape().as_list()
          mask_outputs = tf.transpose(a=mask_outputs, perm=[0, 1, 4, 2, 3])
          # Contructs indices for gather.
          batch_indices = tf.tile(
              tf.expand_dims(tf.range(batch_size), axis=1), [1, num_masks])
          mask_indices = tf.tile(
              tf.expand_dims(tf.range(num_masks), axis=0), [batch_size, 1])
          gather_indices = tf.stack(
              [batch_indices, mask_indices, class_indices], axis=2)
          mask_outputs = tf.gather_nd(mask_outputs, gather_indices)
      return mask_outputs


class RetinanetHead(object):
  """RetinaNet head."""

Hongkun Yu's avatar
Hongkun Yu committed
690
691
692
693
694
695
696
697
698
699
  def __init__(
      self,
      min_level,
      max_level,
      num_classes,
      anchors_per_location,
      num_convs=4,
      num_filters=256,
      use_separable_conv=False,
      norm_activation=nn_ops.norm_activation_builder(activation='relu')):
700
701
702
703
704
705
706
707
708
709
    """Initialize params to build RetinaNet head.

    Args:
      min_level: `int` number of minimum feature level.
      max_level: `int` number of maximum feature level.
      num_classes: `int` number of classification categories.
      anchors_per_location: `int` number of anchors per pixel location.
      num_convs: `int` number of stacked convolution before the last prediction
        layer.
      num_filters: `int` number of filters used in the head architecture.
710
711
      use_separable_conv: `bool` to indicate whether to use separable
        convoluation.
Hongkun Yu's avatar
Hongkun Yu committed
712
713
      norm_activation: an operation that includes a normalization layer followed
        by an optional activation layer.
714
715
716
717
718
719
720
721
722
    """
    self._min_level = min_level
    self._max_level = max_level

    self._num_classes = num_classes
    self._anchors_per_location = anchors_per_location

    self._num_convs = num_convs
    self._num_filters = num_filters
723
    self._use_separable_conv = use_separable_conv
724
725
726
727
    with tf.name_scope('class_net') as scope_name:
      self._class_name_scope = tf.name_scope(scope_name)
    with tf.name_scope('box_net') as scope_name:
      self._box_name_scope = tf.name_scope(scope_name)
Pengchong Jin's avatar
Pengchong Jin committed
728
729
    self._build_class_net_layers(norm_activation)
    self._build_box_net_layers(norm_activation)
730
731
732
733
734
735
736

  def _class_net_batch_norm_name(self, i, level):
    return 'class-%d-%d' % (i, level)

  def _box_net_batch_norm_name(self, i, level):
    return 'box-%d-%d' % (i, level)

Pengchong Jin's avatar
Pengchong Jin committed
737
  def _build_class_net_layers(self, norm_activation):
738
    """Build re-usable layers for class prediction network."""
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
    if self._use_separable_conv:
      self._class_predict = tf.keras.layers.SeparableConv2D(
          self._num_classes * self._anchors_per_location,
          kernel_size=(3, 3),
          bias_initializer=tf.constant_initializer(-np.log((1 - 0.01) / 0.01)),
          padding='same',
          name='class-predict')
    else:
      self._class_predict = tf.keras.layers.Conv2D(
          self._num_classes * self._anchors_per_location,
          kernel_size=(3, 3),
          bias_initializer=tf.constant_initializer(-np.log((1 - 0.01) / 0.01)),
          kernel_initializer=tf.keras.initializers.RandomNormal(stddev=1e-5),
          padding='same',
          name='class-predict')
754
    self._class_conv = []
Pengchong Jin's avatar
Pengchong Jin committed
755
    self._class_norm_activation = {}
756
    for i in range(self._num_convs):
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
      if self._use_separable_conv:
        self._class_conv.append(
            tf.keras.layers.SeparableConv2D(
                self._num_filters,
                kernel_size=(3, 3),
                bias_initializer=tf.zeros_initializer(),
                activation=None,
                padding='same',
                name='class-' + str(i)))
      else:
        self._class_conv.append(
            tf.keras.layers.Conv2D(
                self._num_filters,
                kernel_size=(3, 3),
                bias_initializer=tf.zeros_initializer(),
                kernel_initializer=tf.keras.initializers.RandomNormal(
                    stddev=0.01),
                activation=None,
                padding='same',
                name='class-' + str(i)))
777
778
      for level in range(self._min_level, self._max_level + 1):
        name = self._class_net_batch_norm_name(i, level)
Pengchong Jin's avatar
Pengchong Jin committed
779
        self._class_norm_activation[name] = norm_activation(name=name)
780

Pengchong Jin's avatar
Pengchong Jin committed
781
  def _build_box_net_layers(self, norm_activation):
782
    """Build re-usable layers for box prediction network."""
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
    if self._use_separable_conv:
      self._box_predict = tf.keras.layers.SeparableConv2D(
          4 * self._anchors_per_location,
          kernel_size=(3, 3),
          bias_initializer=tf.zeros_initializer(),
          padding='same',
          name='box-predict')
    else:
      self._box_predict = tf.keras.layers.Conv2D(
          4 * self._anchors_per_location,
          kernel_size=(3, 3),
          bias_initializer=tf.zeros_initializer(),
          kernel_initializer=tf.keras.initializers.RandomNormal(stddev=1e-5),
          padding='same',
          name='box-predict')
798
    self._box_conv = []
Pengchong Jin's avatar
Pengchong Jin committed
799
    self._box_norm_activation = {}
800
    for i in range(self._num_convs):
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
      if self._use_separable_conv:
        self._box_conv.append(
            tf.keras.layers.SeparableConv2D(
                self._num_filters,
                kernel_size=(3, 3),
                activation=None,
                bias_initializer=tf.zeros_initializer(),
                padding='same',
                name='box-' + str(i)))
      else:
        self._box_conv.append(
            tf.keras.layers.Conv2D(
                self._num_filters,
                kernel_size=(3, 3),
                activation=None,
                bias_initializer=tf.zeros_initializer(),
                kernel_initializer=tf.keras.initializers.RandomNormal(
                    stddev=0.01),
                padding='same',
                name='box-' + str(i)))
821
822
      for level in range(self._min_level, self._max_level + 1):
        name = self._box_net_batch_norm_name(i, level)
Pengchong Jin's avatar
Pengchong Jin committed
823
        self._box_norm_activation[name] = norm_activation(name=name)
824
825
826
827
828

  def __call__(self, fpn_features, is_training=None):
    """Returns outputs of RetinaNet head."""
    class_outputs = {}
    box_outputs = {}
829
830
    with keras_utils.maybe_enter_backend_graph(), tf.name_scope(
        'retinanet_head'):
831
832
833
834
835
836
837
838
839
840
841
842
843
844
      for level in range(self._min_level, self._max_level + 1):
        features = fpn_features[level]

        class_outputs[level] = self.class_net(
            features, level, is_training=is_training)
        box_outputs[level] = self.box_net(
            features, level, is_training=is_training)
    return class_outputs, box_outputs

  def class_net(self, features, level, is_training):
    """Class prediction network for RetinaNet."""
    with self._class_name_scope:
      for i in range(self._num_convs):
        features = self._class_conv[i](features)
845
846
        # The convolution layers in the class net are shared among all levels,
        # but each level has its batch normlization to capture the statistical
847
848
        # difference among different levels.
        name = self._class_net_batch_norm_name(i, level)
Pengchong Jin's avatar
Pengchong Jin committed
849
        features = self._class_norm_activation[name](
850
851
852
853
854
855
856
857
858
859
860
861
862
863
            features, is_training=is_training)

      classes = self._class_predict(features)
    return classes

  def box_net(self, features, level, is_training=None):
    """Box regression network for RetinaNet."""
    with self._box_name_scope:
      for i in range(self._num_convs):
        features = self._box_conv[i](features)
        # The convolution layers in the box net are shared among all levels, but
        # each level has its batch normlization to capture the statistical
        # difference among different levels.
        name = self._box_net_batch_norm_name(i, level)
Pengchong Jin's avatar
Pengchong Jin committed
864
        features = self._box_norm_activation[name](
865
866
867
868
869
870
871
872
873
874
            features, is_training=is_training)

      boxes = self._box_predict(features)
    return boxes


# TODO(yeqing): Refactor this class when it is ready for var_scope reuse.
class ShapemaskPriorHead(object):
  """ShapeMask Prior head."""

Hongkun Yu's avatar
Hongkun Yu committed
875
876
  def __init__(self, num_classes, num_downsample_channels, mask_crop_size,
               use_category_for_mask, shape_prior_path):
877
878
879
880
881
882
883
884
885
    """Initialize params to build RetinaNet head.

    Args:
      num_classes: Number of output classes.
      num_downsample_channels: number of channels in mask branch.
      mask_crop_size: feature crop size.
      use_category_for_mask: use class information in mask branch.
      shape_prior_path: the path to load shape priors.
    """
886
    self._mask_num_classes = num_classes if use_category_for_mask else 1
887
888
889
    self._num_downsample_channels = num_downsample_channels
    self._mask_crop_size = mask_crop_size
    self._shape_prior_path = shape_prior_path
890
891
892
893
    self._use_category_for_mask = use_category_for_mask

    self._shape_prior_fc = tf.keras.layers.Dense(
        self._num_downsample_channels, name='shape-prior-fc')
894

895
  def __call__(self, fpn_features, boxes, outer_boxes, classes, is_training):
896
897
898
899
900
901
902
    """Generate the detection priors from the box detections and FPN features.

    This corresponds to the Fig. 4 of the ShapeMask paper at
    https://arxiv.org/pdf/1904.03239.pdf

    Args:
      fpn_features: a dictionary of FPN features.
Hongkun Yu's avatar
Hongkun Yu committed
903
904
      boxes: a float tensor of shape [batch_size, num_instances, 4] representing
        the tight gt boxes from dataloader/detection.
905
906
      outer_boxes: a float tensor of shape [batch_size, num_instances, 4]
        representing the loose gt boxes from dataloader/detection.
Hongkun Yu's avatar
Hongkun Yu committed
907
908
      classes: a int Tensor of shape [batch_size, num_instances] of instance
        classes.
909
910
911
      is_training: training mode or not.

    Returns:
912
      instance_features: a float Tensor of shape [batch_size * num_instances,
913
914
915
916
917
          mask_crop_size, mask_crop_size, num_downsample_channels]. This is the
          instance feature crop.
      detection_priors: A float Tensor of shape [batch_size * num_instances,
        mask_size, mask_size, 1].
    """
918
    with keras_utils.maybe_enter_backend_graph(), tf.name_scope('prior_mask'):
919
920
921
922
923
924
925
926
927
928
      batch_size, num_instances, _ = boxes.get_shape().as_list()
      outer_boxes = tf.cast(outer_boxes, tf.float32)
      boxes = tf.cast(boxes, tf.float32)
      instance_features = spatial_transform_ops.multilevel_crop_and_resize(
          fpn_features, outer_boxes, output_size=self._mask_crop_size)
      instance_features = self._shape_prior_fc(instance_features)

      shape_priors = self._get_priors()

      # Get uniform priors for each outer box.
Hongkun Yu's avatar
Hongkun Yu committed
929
930
931
      uniform_priors = tf.ones([
          batch_size, num_instances, self._mask_crop_size, self._mask_crop_size
      ])
932
      uniform_priors = spatial_transform_ops.crop_mask_in_target_box(
933
934
935
936
937
938
939
          uniform_priors, boxes, outer_boxes, self._mask_crop_size)

      # Classify shape priors using uniform priors + instance features.
      prior_distribution = self._classify_shape_priors(
          tf.cast(instance_features, tf.float32), uniform_priors, classes)

      instance_priors = tf.gather(shape_priors, classes)
Hongkun Yu's avatar
Hongkun Yu committed
940
941
942
      instance_priors *= tf.expand_dims(
          tf.expand_dims(tf.cast(prior_distribution, tf.float32), axis=-1),
          axis=-1)
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
      instance_priors = tf.reduce_sum(instance_priors, axis=2)
      detection_priors = spatial_transform_ops.crop_mask_in_target_box(
          instance_priors, boxes, outer_boxes, self._mask_crop_size)

      return instance_features, detection_priors

  def _get_priors(self):
    """Load shape priors from file."""
    # loads class specific or agnostic shape priors
    if self._shape_prior_path:
      # Priors are loaded into shape [mask_num_classes, num_clusters, 32, 32].
      priors = np.load(tf.io.gfile.GFile(self._shape_prior_path, 'rb'))
      priors = tf.convert_to_tensor(priors, dtype=tf.float32)
      self._num_clusters = priors.get_shape().as_list()[1]
    else:
      # If prior path does not exist, do not use priors, i.e., pirors equal to
      # uniform empty 32x32 patch.
      self._num_clusters = 1
Hongkun Yu's avatar
Hongkun Yu committed
961
962
963
964
      priors = tf.zeros([
          self._mask_num_classes, self._num_clusters, self._mask_crop_size,
          self._mask_crop_size
      ])
965
966
967
    return priors

  def _classify_shape_priors(self, features, uniform_priors, classes):
968
969
970
971
972
973
    """Classify the uniform prior by predicting the shape modes.

    Classify the object crop features into K modes of the clusters for each
    category.

    Args:
Hongkun Yu's avatar
Hongkun Yu committed
974
975
      features: A float Tensor of shape [batch_size, num_instances, mask_size,
        mask_size, num_channels].
976
977
      uniform_priors: A float Tensor of shape [batch_size, num_instances,
        mask_size, mask_size] representing the uniform detection priors.
Hongkun Yu's avatar
Hongkun Yu committed
978
979
      classes: A int Tensor of shape [batch_size, num_instances] of detection
        class ids.
980
981

    Returns:
982
983
      prior_distribution: A float Tensor of shape
        [batch_size, num_instances, num_clusters] representing the classifier
984
985
986
        output probability over all possible shapes.
    """

987
988
989
990
991
992
993
    batch_size, num_instances, _, _, _ = features.get_shape().as_list()
    features *= tf.expand_dims(uniform_priors, axis=-1)
    # Reduce spatial dimension of features. The features have shape
    # [batch_size, num_instances, num_channels].
    features = tf.reduce_mean(features, axis=(2, 3))
    logits = tf.keras.layers.Dense(
        self._mask_num_classes * self._num_clusters,
Hongkun Yu's avatar
Hongkun Yu committed
994
995
996
997
998
        kernel_initializer=tf.random_normal_initializer(stddev=0.01))(
            features)
    logits = tf.reshape(
        logits,
        [batch_size, num_instances, self._mask_num_classes, self._num_clusters])
999
    if self._use_category_for_mask:
1000
1001
      logits = tf.gather(logits, tf.expand_dims(classes, axis=-1), batch_dims=2)
      logits = tf.squeeze(logits, axis=2)
1002
    else:
1003
1004
1005
1006
      logits = logits[:, :, 0, :]

    distribution = tf.nn.softmax(logits, name='shape_prior_weights')
    return distribution
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016


class ShapemaskCoarsemaskHead(object):
  """ShapemaskCoarsemaskHead head."""

  def __init__(self,
               num_classes,
               num_downsample_channels,
               mask_crop_size,
               use_category_for_mask,
1017
1018
               num_convs,
               norm_activation=nn_ops.norm_activation_builder()):
1019
1020
1021
1022
1023
1024
1025
1026
1027
    """Initialize params to build ShapeMask coarse and fine prediction head.

    Args:
      num_classes: `int` number of mask classification categories.
      num_downsample_channels: `int` number of filters at mask head.
      mask_crop_size: feature crop size.
      use_category_for_mask: use class information in mask branch.
      num_convs: `int` number of stacked convolution before the last prediction
        layer.
Hongkun Yu's avatar
Hongkun Yu committed
1028
1029
      norm_activation: an operation that includes a normalization layer followed
        by an optional activation layer.
1030
    """
1031
1032
    self._mask_num_classes = num_classes if use_category_for_mask else 1
    self._use_category_for_mask = use_category_for_mask
1033
1034
1035
    self._num_downsample_channels = num_downsample_channels
    self._mask_crop_size = mask_crop_size
    self._num_convs = num_convs
1036
1037
1038
1039
1040
1041
1042
1043
1044
    self._norm_activation = norm_activation

    self._coarse_mask_fc = tf.keras.layers.Dense(
        self._num_downsample_channels, name='coarse-mask-fc')

    self._class_conv = []
    self._class_norm_activation = []

    for i in range(self._num_convs):
Hongkun Yu's avatar
Hongkun Yu committed
1045
1046
1047
1048
1049
1050
1051
1052
1053
      self._class_conv.append(
          tf.keras.layers.Conv2D(
              self._num_downsample_channels,
              kernel_size=(3, 3),
              bias_initializer=tf.zeros_initializer(),
              kernel_initializer=tf.keras.initializers.RandomNormal(
                  stddev=0.01),
              padding='same',
              name='coarse-mask-class-%d' % i))
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067

      self._class_norm_activation.append(
          norm_activation(name='coarse-mask-class-%d-bn' % i))

    self._class_predict = tf.keras.layers.Conv2D(
        self._mask_num_classes,
        kernel_size=(1, 1),
        # Focal loss bias initialization to have foreground 0.01 probability.
        bias_initializer=tf.constant_initializer(-np.log((1 - 0.01) / 0.01)),
        kernel_initializer=tf.keras.initializers.RandomNormal(stddev=0.01),
        padding='same',
        name='coarse-mask-class-predict')

  def __call__(self, features, detection_priors, classes, is_training):
1068
1069
1070
1071
1072
1073
    """Generate instance masks from FPN features and detection priors.

    This corresponds to the Fig. 5-6 of the ShapeMask paper at
    https://arxiv.org/pdf/1904.03239.pdf

    Args:
1074
      features: a float Tensor of shape [batch_size, num_instances,
1075
1076
        mask_crop_size, mask_crop_size, num_downsample_channels]. This is the
        instance feature crop.
1077
      detection_priors: a float Tensor of shape [batch_size, num_instances,
Hongkun Yu's avatar
Hongkun Yu committed
1078
1079
1080
1081
        mask_crop_size, mask_crop_size, 1]. This is the detection prior for the
        instance.
      classes: a int Tensor of shape [batch_size, num_instances] of instance
        classes.
1082
1083
1084
1085
      is_training: a bool indicating whether in training mode.

    Returns:
      mask_outputs: instance mask prediction as a float Tensor of shape
1086
        [batch_size, num_instances, mask_size, mask_size].
1087
    """
1088
    with keras_utils.maybe_enter_backend_graph(), tf.name_scope('coarse_mask'):
1089
1090
1091
1092
1093
1094
1095
1096
1097
      # Transform detection priors to have the same dimension as features.
      detection_priors = tf.expand_dims(detection_priors, axis=-1)
      detection_priors = self._coarse_mask_fc(detection_priors)

      features += detection_priors
      mask_logits = self.decoder_net(features, is_training)
      # Gather the logits with right input class.
      if self._use_category_for_mask:
        mask_logits = tf.transpose(mask_logits, [0, 1, 4, 2, 3])
Hongkun Yu's avatar
Hongkun Yu committed
1098
1099
        mask_logits = tf.gather(
            mask_logits, tf.expand_dims(classes, -1), batch_dims=2)
1100
1101
1102
        mask_logits = tf.squeeze(mask_logits, axis=2)
      else:
        mask_logits = mask_logits[..., 0]
1103

1104
      return mask_logits
1105

1106
  def decoder_net(self, features, is_training=False):
1107
1108
1109
    """Coarse mask decoder network architecture.

    Args:
1110
      features: A tensor of size [batch, height_in, width_in, channels_in].
1111
      is_training: Whether batch_norm layers are in training mode.
1112

1113
1114
1115
1116
    Returns:
      images: A feature tensor of size [batch, output_size, output_size,
        num_channels]
    """
1117
1118
    (batch_size, num_instances, height, width,
     num_channels) = features.get_shape().as_list()
Hongkun Yu's avatar
Hongkun Yu committed
1119
1120
    features = tf.reshape(
        features, [batch_size * num_instances, height, width, num_channels])
1121
    for i in range(self._num_convs):
1122
      features = self._class_conv[i](features)
Hongkun Yu's avatar
Hongkun Yu committed
1123
1124
      features = self._class_norm_activation[i](
          features, is_training=is_training)
1125

1126
    mask_logits = self._class_predict(features)
Hongkun Yu's avatar
Hongkun Yu committed
1127
1128
1129
    mask_logits = tf.reshape(
        mask_logits,
        [batch_size, num_instances, height, width, self._mask_num_classes])
1130
    return mask_logits
1131
1132
1133
1134
1135
1136
1137
1138
1139


class ShapemaskFinemaskHead(object):
  """ShapemaskFinemaskHead head."""

  def __init__(self,
               num_classes,
               num_downsample_channels,
               mask_crop_size,
1140
               use_category_for_mask,
1141
               num_convs,
1142
               upsample_factor,
Pengchong Jin's avatar
Pengchong Jin committed
1143
               norm_activation=nn_ops.norm_activation_builder()):
1144
1145
1146
1147
1148
1149
    """Initialize params to build ShapeMask coarse and fine prediction head.

    Args:
      num_classes: `int` number of mask classification categories.
      num_downsample_channels: `int` number of filters at mask head.
      mask_crop_size: feature crop size.
1150
      use_category_for_mask: use class information in mask branch.
1151
1152
      num_convs: `int` number of stacked convolution before the last prediction
        layer.
1153
      upsample_factor: `int` number of fine mask upsampling factor.
Pengchong Jin's avatar
Pengchong Jin committed
1154
      norm_activation: an operation that includes a batch normalization layer
1155
1156
        followed by a relu layer(optional).
    """
1157
1158
    self._use_category_for_mask = use_category_for_mask
    self._mask_num_classes = num_classes if use_category_for_mask else 1
1159
1160
1161
    self._num_downsample_channels = num_downsample_channels
    self._mask_crop_size = mask_crop_size
    self._num_convs = num_convs
1162
1163
1164
1165
    self.up_sample_factor = upsample_factor

    self._fine_mask_fc = tf.keras.layers.Dense(
        self._num_downsample_channels, name='fine-mask-fc')
1166
1167

    self._upsample_conv = tf.keras.layers.Conv2DTranspose(
1168
1169
1170
1171
1172
        self._num_downsample_channels,
        (self.up_sample_factor, self.up_sample_factor),
        (self.up_sample_factor, self.up_sample_factor),
        name='fine-mask-conv2d-tran')

1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
    self._fine_class_conv = []
    self._fine_class_bn = []
    for i in range(self._num_convs):
      self._fine_class_conv.append(
          tf.keras.layers.Conv2D(
              self._num_downsample_channels,
              kernel_size=(3, 3),
              bias_initializer=tf.zeros_initializer(),
              kernel_initializer=tf.keras.initializers.RandomNormal(
                  stddev=0.01),
              activation=None,
              padding='same',
1185
              name='fine-mask-class-%d' % i))
Hongkun Yu's avatar
Hongkun Yu committed
1186
1187
      self._fine_class_bn.append(
          norm_activation(name='fine-mask-class-%d-bn' % i))
1188
1189
1190
1191
1192
1193
1194
1195
1196

    self._class_predict_conv = tf.keras.layers.Conv2D(
        self._mask_num_classes,
        kernel_size=(1, 1),
        # Focal loss bias initialization to have foreground 0.01 probability.
        bias_initializer=tf.constant_initializer(-np.log((1 - 0.01) / 0.01)),
        kernel_initializer=tf.keras.initializers.RandomNormal(stddev=0.01),
        padding='same',
        name='fine-mask-class-predict')
1197

1198
  def __call__(self, features, mask_logits, classes, is_training):
1199
1200
1201
1202
1203
1204
    """Generate instance masks from FPN features and detection priors.

    This corresponds to the Fig. 5-6 of the ShapeMask paper at
    https://arxiv.org/pdf/1904.03239.pdf

    Args:
Hongkun Yu's avatar
Hongkun Yu committed
1205
1206
1207
1208
1209
1210
1211
      features: a float Tensor of shape [batch_size, num_instances,
        mask_crop_size, mask_crop_size, num_downsample_channels]. This is the
        instance feature crop.
      mask_logits: a float Tensor of shape [batch_size, num_instances,
        mask_crop_size, mask_crop_size] indicating predicted mask logits.
      classes: a int Tensor of shape [batch_size, num_instances] of instance
        classes.
1212
1213
1214
1215
      is_training: a bool indicating whether in training mode.

    Returns:
      mask_outputs: instance mask prediction as a float Tensor of shape
1216
        [batch_size, num_instances, mask_size, mask_size].
1217
    """
1218
1219
    # Extract the foreground mean features
    # with tf.variable_scope('fine_mask', reuse=tf.AUTO_REUSE):
1220
    with keras_utils.maybe_enter_backend_graph(), tf.name_scope('fine_mask'):
1221
1222
1223
      mask_probs = tf.nn.sigmoid(mask_logits)
      # Compute instance embedding for hard average.
      binary_mask = tf.cast(tf.greater(mask_probs, 0.5), features.dtype)
1224
      instance_embedding = tf.reduce_sum(
1225
1226
1227
          features * tf.expand_dims(binary_mask, axis=-1), axis=(2, 3))
      instance_embedding /= tf.expand_dims(
          tf.reduce_sum(binary_mask, axis=(2, 3)) + 1e-20, axis=-1)
1228
      # Take the difference between crop features and mean instance features.
1229
1230
      features -= tf.expand_dims(
          tf.expand_dims(instance_embedding, axis=2), axis=2)
1231

1232
      features += self._fine_mask_fc(tf.expand_dims(mask_probs, axis=-1))
1233

1234
1235
1236
1237
      # Decoder to generate upsampled segmentation mask.
      mask_logits = self.decoder_net(features, is_training)
      if self._use_category_for_mask:
        mask_logits = tf.transpose(mask_logits, [0, 1, 4, 2, 3])
Hongkun Yu's avatar
Hongkun Yu committed
1238
1239
        mask_logits = tf.gather(
            mask_logits, tf.expand_dims(classes, -1), batch_dims=2)
1240
1241
1242
        mask_logits = tf.squeeze(mask_logits, axis=2)
      else:
        mask_logits = mask_logits[..., 0]
1243

1244
    return mask_logits
1245

1246
  def decoder_net(self, features, is_training=False):
1247
1248
1249
    """Fine mask decoder network architecture.

    Args:
1250
      features: A tensor of size [batch, height_in, width_in, channels_in].
1251
1252
1253
1254
1255
1256
1257
      is_training: Whether batch_norm layers are in training mode.

    Returns:
      images: A feature tensor of size [batch, output_size, output_size,
        num_channels], where output size is self._gt_upsample_scale times
        that of input.
    """
1258
1259
    (batch_size, num_instances, height, width,
     num_channels) = features.get_shape().as_list()
Hongkun Yu's avatar
Hongkun Yu committed
1260
1261
    features = tf.reshape(
        features, [batch_size * num_instances, height, width, num_channels])
1262
    for i in range(self._num_convs):
1263
1264
1265
1266
1267
      features = self._fine_class_conv[i](features)
      features = self._fine_class_bn[i](features, is_training=is_training)

    if self.up_sample_factor > 1:
      features = self._upsample_conv(features)
1268

1269
1270
    # Predict per-class instance masks.
    mask_logits = self._class_predict_conv(features)
1271

Hongkun Yu's avatar
Hongkun Yu committed
1272
1273
1274
1275
    mask_logits = tf.reshape(mask_logits, [
        batch_size, num_instances, height * self.up_sample_factor,
        width * self.up_sample_factor, self._mask_num_classes
    ])
1276
    return mask_logits