keras_imagenet_benchmark.py 58.7 KB
Newer Older
Allen Wang's avatar
Allen Wang committed
1
# Lint as: python3
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Executes Keras benchmarks and accuracy tests."""
Hongkun Yu's avatar
Hongkun Yu committed
17
# pylint: disable=line-too-long
18
19
from __future__ import print_function

Allen Wang's avatar
Allen Wang committed
20
import json
21
import os
22
import time
23

Allen Wang's avatar
Allen Wang committed
24
25
from typing import Any, MutableMapping, Optional

26
from absl import flags
27
import tensorflow as tf  # pylint: disable=g-bad-import-order
28

29
from official.benchmark import benchmark_wrappers
30
from official.benchmark import keras_benchmark
31
from official.benchmark.models import resnet_imagenet_main
Allen Wang's avatar
Allen Wang committed
32
from official.vision.image_classification import classifier_trainer
33

Toby Boyd's avatar
Toby Boyd committed
34
35
MIN_TOP_1_ACCURACY = 0.76
MAX_TOP_1_ACCURACY = 0.77
36

Jaehong Kim's avatar
Jaehong Kim committed
37
38
39
40
41
42
43
44
45
46
MOBILENET_V1_MIN_TOP_1_ACCURACY = 0.65
MOBILENET_V1_MAX_TOP_1_ACCURACY = 0.68

# Range of top-1 accracies for model optimization techniques.
# Each item indicates (MIN_TOP_1_ACCURACY, MAX_TOP_1_ACCURACY).
MODEL_OPTIMIZATION_TOP_1_ACCURACY = {
    'RESNET50_FINETUNE_PRUNING': (0.76, 0.77),
    'MOBILENET_V1_FINETUNE_PRUNING': (0.67, 0.68),
}

Toby Boyd's avatar
Toby Boyd committed
47
FLAGS = flags.FLAGS
48
49


Allen Wang's avatar
Allen Wang committed
50
51
52
53
54
55
56
57
58
59
60
61
62
63
def _get_classifier_parameters(
    num_gpus: int = 0,
    builder: str = 'records',
    skip_eval: bool = False,
    distribution_strategy: str = 'mirrored',
    per_replica_batch_size: int = 128,
    epochs: int = 90,
    steps: int = 0,
    epochs_between_evals: int = 1,
    dtype: str = 'float32',
    enable_xla: bool = False,
    run_eagerly: bool = False,
    gpu_thread_mode: Optional[str] = None,
    dataset_num_private_threads: Optional[int] = None,
64
65
    loss_scale: Optional[str] = None,
    batchnorm_spatial_persistent: bool = False) -> MutableMapping[str, Any]:
Allen Wang's avatar
Allen Wang committed
66
67
68
69
70
71
72
73
74
75
  """Gets classifier trainer's ResNet parameters."""
  return {
      'runtime': {
          'num_gpus': num_gpus,
          'distribution_strategy': distribution_strategy,
          'run_eagerly': run_eagerly,
          'enable_xla': enable_xla,
          'dataset_num_private_threads': dataset_num_private_threads,
          'gpu_thread_mode': gpu_thread_mode,
          'loss_scale': loss_scale,
76
          'batchnorm_spatial_persistent': batchnorm_spatial_persistent,
Allen Wang's avatar
Allen Wang committed
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
      },
      'train_dataset': {
          'builder': builder,
          'use_per_replica_batch_size': True,
          'batch_size': per_replica_batch_size,
          'image_size': 224,
          'dtype': dtype,
      },
      'validation_dataset': {
          'builder': builder,
          'batch_size': per_replica_batch_size,
          'use_per_replica_batch_size': True,
          'image_size': 224,
          'dtype': dtype,
      },
      'train': {
          'epochs': epochs,
          'steps': steps,
          'callbacks': {
              'enable_tensorboard': False,
              'enable_checkpoint_and_export': False,
              'enable_time_history': True,
          },
      },
Allen Wang's avatar
Allen Wang committed
101
102
103
104
105
      'model': {
          'loss': {
              'label_smoothing': 0.1,
          },
      },
Allen Wang's avatar
Allen Wang committed
106
107
108
109
110
111
112
      'evaluation': {
          'epochs_between_evals': epochs_between_evals,
          'skip_eval': skip_eval,
      },
  }


Toby Boyd's avatar
Toby Boyd committed
113
114
class Resnet50KerasAccuracy(keras_benchmark.KerasBenchmark):
  """Benchmark accuracy tests for ResNet50 in Keras."""
115

Allen Wang's avatar
Allen Wang committed
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
  def __init__(self,
               output_dir: Optional[str] = None,
               root_data_dir: Optional[str] = None,
               **kwargs):
    """A benchmark class.

    Args:
      output_dir: directory where to output e.g. log files
      root_data_dir: directory under which to look for dataset
      **kwargs: arbitrary named arguments. This is needed to make the
                constructor forward compatible in case PerfZero provides more
                named arguments before updating the constructor.
    """

    flag_methods = [classifier_trainer.define_classifier_flags]

    self.data_dir = os.path.join(root_data_dir, 'imagenet')
133
    super(Resnet50KerasAccuracy, self).__init__(
Allen Wang's avatar
Allen Wang committed
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
        output_dir=output_dir, flag_methods=flag_methods)

  @benchmark_wrappers.enable_runtime_flags
  def _run_and_report_benchmark(
      self,
      experiment_name: str,
      top_1_min: float = MIN_TOP_1_ACCURACY,
      top_1_max: float = MAX_TOP_1_ACCURACY,
      num_gpus: int = 0,
      distribution_strategy: str = 'mirrored',
      per_replica_batch_size: int = 128,
      epochs: int = 90,
      steps: int = 0,
      epochs_between_evals: int = 1,
      dtype: str = 'float32',
      enable_xla: bool = False,
      run_eagerly: bool = False,
      gpu_thread_mode: Optional[str] = None,
      dataset_num_private_threads: Optional[int] = None,
      loss_scale: Optional[str] = None):
    """Runs and reports the benchmark given the provided configuration."""
    FLAGS.model_type = 'resnet'
    FLAGS.dataset = 'imagenet'
    FLAGS.mode = 'train_and_eval'
    FLAGS.data_dir = self.data_dir
    FLAGS.model_dir = self._get_model_dir(experiment_name)
    parameters = _get_classifier_parameters(
        num_gpus=num_gpus,
        distribution_strategy=distribution_strategy,
        per_replica_batch_size=per_replica_batch_size,
        epochs=epochs,
        steps=steps,
        epochs_between_evals=epochs_between_evals,
        dtype=dtype,
        enable_xla=enable_xla,
        run_eagerly=run_eagerly,
        gpu_thread_mode=gpu_thread_mode,
        dataset_num_private_threads=dataset_num_private_threads,
172
173
        loss_scale=loss_scale,
        batchnorm_spatial_persistent=True)
Allen Wang's avatar
Allen Wang committed
174
175
176
177
178
179
180
    FLAGS.params_override = json.dumps(parameters)
    total_batch_size = num_gpus * per_replica_batch_size

    start_time_sec = time.time()
    stats = classifier_trainer.run(flags.FLAGS)
    wall_time_sec = time.time() - start_time_sec

181
    super(Resnet50KerasAccuracy, self)._report_benchmark(
Allen Wang's avatar
Allen Wang committed
182
183
184
185
186
187
188
189
190
        stats,
        wall_time_sec,
        top_1_min=top_1_min,
        top_1_max=top_1_max,
        total_batch_size=total_batch_size,
        log_steps=100)

  def benchmark_8_gpu(self):
    """Tests Keras model with eager, dist_strat and 8 GPUs."""
Hongkun Yu's avatar
Hongkun Yu committed
191
192
    self._setup()
    self._run_and_report_benchmark(
Allen Wang's avatar
Allen Wang committed
193
194
195
196
197
        experiment_name='benchmark_8_gpu',
        num_gpus=8,
        per_replica_batch_size=128,
        epochs=90,
        epochs_between_evals=10,
198
        dtype='float32')
Allen Wang's avatar
Allen Wang committed
199
200
201

  def benchmark_8_gpu_fp16(self):
    """Tests Keras model with eager, dist_strat, 8 GPUs, and fp16."""
Hongkun Yu's avatar
Hongkun Yu committed
202
203
    self._setup()
    self._run_and_report_benchmark(
Allen Wang's avatar
Allen Wang committed
204
205
206
207
208
        experiment_name='benchmark_8_gpu_fp16',
        num_gpus=8,
        per_replica_batch_size=256,
        epochs=90,
        epochs_between_evals=10,
209
        dtype='float16')
Allen Wang's avatar
Allen Wang committed
210
211
212

  def benchmark_xla_8_gpu_fp16(self):
    """Tests Keras model with XLA, eager, dist_strat, 8 GPUs and fp16."""
Hongkun Yu's avatar
Hongkun Yu committed
213
214
    self._setup()
    self._run_and_report_benchmark(
Allen Wang's avatar
Allen Wang committed
215
216
217
218
219
220
        experiment_name='benchmark_xla_8_gpu_fp16',
        num_gpus=8,
        per_replica_batch_size=256,
        epochs=90,
        epochs_between_evals=10,
        dtype='float16',
221
        enable_xla=True)
Allen Wang's avatar
Allen Wang committed
222
223
224

  def benchmark_xla_8_gpu_fp16_dynamic(self):
    """Tests Keras model with XLA, eager, dist_strat, 8 GPUs, dynamic fp16."""
Hongkun Yu's avatar
Hongkun Yu committed
225
226
    self._setup()
    self._run_and_report_benchmark(
Allen Wang's avatar
Allen Wang committed
227
228
229
230
231
232
233
        experiment_name='benchmark_xla_8_gpu_fp16_dynamic',
        top_1_min=0.736,
        num_gpus=8,
        per_replica_batch_size=256,
        epochs=90,
        epochs_between_evals=10,
        dtype='float16',
234
        loss_scale='dynamic')
Allen Wang's avatar
Allen Wang committed
235
236
237
238
239

  def _get_model_dir(self, folder_name):
    return os.path.join(self.output_dir, folder_name)


Jaehong Kim's avatar
Jaehong Kim committed
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
class MobilenetV1KerasAccuracy(keras_benchmark.KerasBenchmark):
  """Benchmark accuracy tests for MobilenetV1 in Keras."""

  def __init__(self, output_dir=None, root_data_dir=None, **kwargs):
    """A benchmark class.

    Args:
      output_dir: directory where to output e.g. log files
      root_data_dir: directory under which to look for dataset
      **kwargs: arbitrary named arguments. This is needed to make the
                constructor forward compatible in case PerfZero provides more
                named arguments before updating the constructor.
    """

    flag_methods = [resnet_imagenet_main.define_imagenet_keras_flags]

    self.data_dir = os.path.join(root_data_dir, 'imagenet')
    super(MobilenetV1KerasAccuracy, self).__init__(
        output_dir=output_dir,
        flag_methods=flag_methods,
        default_flags={
            'model': 'mobilenet',
            'optimizer': 'mobilenet_default',
            'initial_learning_rate_per_sample': 0.00039,
        })

  def benchmark_8_gpu(self):
    """Test Keras model with eager, dist_strat and 8 GPUs."""
    self._setup()
    FLAGS.num_gpus = 8
    FLAGS.data_dir = self.data_dir
    FLAGS.batch_size = 128 * 8
    FLAGS.train_epochs = 90
    FLAGS.epochs_between_evals = 10
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu')
    FLAGS.dtype = 'fp32'
    FLAGS.enable_eager = True
    self._run_and_report_benchmark()

  @benchmark_wrappers.enable_runtime_flags
  def _run_and_report_benchmark(self,
                                top_1_min=MOBILENET_V1_MIN_TOP_1_ACCURACY,
                                top_1_max=MOBILENET_V1_MAX_TOP_1_ACCURACY):
    start_time_sec = time.time()
    stats = resnet_imagenet_main.run(flags.FLAGS)
    wall_time_sec = time.time() - start_time_sec

    super(MobilenetV1KerasAccuracy, self)._report_benchmark(
        stats,
        wall_time_sec,
        top_1_min=top_1_min,
        top_1_max=top_1_max,
        total_batch_size=FLAGS.batch_size,
        log_steps=100)

  def _get_model_dir(self, folder_name):
    return os.path.join(self.output_dir, folder_name)


Allen Wang's avatar
Allen Wang committed
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
class Resnet50KerasClassifierBenchmarkBase(keras_benchmark.KerasBenchmark):
  """Resnet50 (classifier_trainer) benchmarks."""

  def __init__(self, output_dir=None, default_flags=None,
               tpu=None, dataset_builder='records', train_epochs=1,
               train_steps=110, data_dir=None):
    flag_methods = [classifier_trainer.define_classifier_flags]

    self.dataset_builder = dataset_builder
    self.train_epochs = train_epochs
    self.train_steps = train_steps
    self.data_dir = data_dir

    super(Resnet50KerasClassifierBenchmarkBase, self).__init__(
        output_dir=output_dir,
        flag_methods=flag_methods,
        default_flags=default_flags,
        tpu=tpu)

  @benchmark_wrappers.enable_runtime_flags
  def _run_and_report_benchmark(
      self,
      experiment_name: str,
      skip_steps: Optional[int] = None,
      top_1_min: float = MIN_TOP_1_ACCURACY,
      top_1_max: float = MAX_TOP_1_ACCURACY,
      num_gpus: int = 0,
David Chen's avatar
David Chen committed
326
      num_tpus: int = 0,
Allen Wang's avatar
Allen Wang committed
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
      distribution_strategy: str = 'mirrored',
      per_replica_batch_size: int = 128,
      epochs_between_evals: int = 1,
      dtype: str = 'float32',
      enable_xla: bool = False,
      run_eagerly: bool = False,
      gpu_thread_mode: Optional[str] = None,
      dataset_num_private_threads: Optional[int] = None,
      loss_scale: Optional[str] = None):
    """Runs and reports the benchmark given the provided configuration."""
    FLAGS.model_type = 'resnet'
    FLAGS.dataset = 'imagenet'
    FLAGS.mode = 'train_and_eval'
    FLAGS.data_dir = self.data_dir
    FLAGS.model_dir = self._get_model_dir(experiment_name)
    parameters = _get_classifier_parameters(
        builder=self.dataset_builder,
        skip_eval=True,
        num_gpus=num_gpus,
        distribution_strategy=distribution_strategy,
        per_replica_batch_size=per_replica_batch_size,
        epochs=self.train_epochs,
        steps=self.train_steps,
        epochs_between_evals=epochs_between_evals,
        dtype=dtype,
        enable_xla=enable_xla,
        gpu_thread_mode=gpu_thread_mode,
        dataset_num_private_threads=dataset_num_private_threads,
355
356
        loss_scale=loss_scale,
        batchnorm_spatial_persistent=True)
Allen Wang's avatar
Allen Wang committed
357
    FLAGS.params_override = json.dumps(parameters)
David Chen's avatar
David Chen committed
358
359
360
361
    if distribution_strategy == 'tpu':
      total_batch_size = num_tpus * per_replica_batch_size
    else:
      total_batch_size = num_gpus * per_replica_batch_size
Allen Wang's avatar
Allen Wang committed
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380

    start_time_sec = time.time()
    stats = classifier_trainer.run(flags.FLAGS)
    wall_time_sec = time.time() - start_time_sec
    # Number of logged step time entries that are excluded in performance
    # report. We keep results from last 100 batches, or skip the steps based on
    # input skip_steps.
    warmup = (skip_steps or (self.train_steps - 100)) // FLAGS.log_steps

    super(Resnet50KerasClassifierBenchmarkBase, self)._report_benchmark(
        stats,
        wall_time_sec,
        total_batch_size=total_batch_size,
        log_steps=FLAGS.log_steps,
        warmup=warmup,
        start_time_sec=start_time_sec)

  def benchmark_1_gpu_no_dist_strat(self):
    """Tests Keras model with 1 GPU, no distribution strategy."""
Hongkun Yu's avatar
Hongkun Yu committed
381
    self._setup()
Allen Wang's avatar
Allen Wang committed
382
383
384
385
386
387
388
389
    self._run_and_report_benchmark(
        experiment_name='benchmark_1_gpu_no_dist_strat',
        num_gpus=1,
        distribution_strategy='off',
        per_replica_batch_size=128)

  def benchmark_1_gpu_no_dist_strat_run_eagerly(self):
    """Tests Keras model with 1 GPU, no distribution strategy, run eagerly."""
Hongkun Yu's avatar
Hongkun Yu committed
390
    self._setup()
Allen Wang's avatar
Allen Wang committed
391
392
393
394
395
396
397
398
399
    self._run_and_report_benchmark(
        experiment_name='benchmark_1_gpu_no_dist_strat_run_eagerly',
        num_gpus=1,
        run_eagerly=True,
        distribution_strategy='off',
        per_replica_batch_size=64)

  def benchmark_1_gpu_no_dist_strat_run_eagerly_fp16(self):
    """Tests with 1 GPU, no distribution strategy, fp16, run eagerly."""
Hongkun Yu's avatar
Hongkun Yu committed
400
    self._setup()
Allen Wang's avatar
Allen Wang committed
401
402
403
404
405
406
407
408
409
410
    self._run_and_report_benchmark(
        experiment_name='benchmark_1_gpu_no_dist_strat_run_eagerly_fp16',
        num_gpus=1,
        run_eagerly=True,
        distribution_strategy='off',
        dtype='float16',
        per_replica_batch_size=128)

  def benchmark_1_gpu(self):
    """Tests Keras model with 1 GPU."""
Hongkun Yu's avatar
Hongkun Yu committed
411
    self._setup()
Allen Wang's avatar
Allen Wang committed
412
413
414
415
416
417
418
419
    self._run_and_report_benchmark(
        experiment_name='benchmark_1_gpu',
        num_gpus=1,
        distribution_strategy='one_device',
        per_replica_batch_size=128)

  def benchmark_xla_1_gpu(self):
    """Tests Keras model with XLA and 1 GPU."""
Hongkun Yu's avatar
Hongkun Yu committed
420
    self._setup()
Allen Wang's avatar
Allen Wang committed
421
422
423
424
425
426
427
428
429
    self._run_and_report_benchmark(
        experiment_name='benchmark_xla_1_gpu',
        num_gpus=1,
        enable_xla=True,
        distribution_strategy='one_device',
        per_replica_batch_size=128)

  def benchmark_1_gpu_fp16(self):
    """Tests Keras model with 1 GPU and fp16."""
Hongkun Yu's avatar
Hongkun Yu committed
430
    self._setup()
Allen Wang's avatar
Allen Wang committed
431
432
433
434
435
436
437
438
439
    self._run_and_report_benchmark(
        experiment_name='benchmark_1_gpu_fp16',
        num_gpus=1,
        distribution_strategy='one_device',
        dtype='float16',
        per_replica_batch_size=256)

  def benchmark_1_gpu_fp16_dynamic(self):
    """Tests Keras model with 1 GPU, fp16, and dynamic loss scaling."""
Hongkun Yu's avatar
Hongkun Yu committed
440
    self._setup()
Allen Wang's avatar
Allen Wang committed
441
442
443
444
445
446
447
448
449
450
    self._run_and_report_benchmark(
        experiment_name='benchmark_1_gpu_fp16_dynamic',
        num_gpus=1,
        distribution_strategy='one_device',
        dtype='float16',
        per_replica_batch_size=256,
        loss_scale='dynamic')

  def benchmark_xla_1_gpu_fp16(self):
    """Tests Keras model with XLA, 1 GPU and fp16."""
Hongkun Yu's avatar
Hongkun Yu committed
451
    self._setup()
Allen Wang's avatar
Allen Wang committed
452
453
454
455
456
457
458
459
460
461
    self._run_and_report_benchmark(
        experiment_name='benchmark_xla_1_gpu_fp16',
        num_gpus=1,
        enable_xla=True,
        distribution_strategy='one_device',
        dtype='float16',
        per_replica_batch_size=256)

  def benchmark_xla_1_gpu_fp16_tweaked(self):
    """Tests Keras model with XLA, 1 GPU, fp16, and manual config tuning."""
Hongkun Yu's avatar
Hongkun Yu committed
462
    self._setup()
Allen Wang's avatar
Allen Wang committed
463
464
465
466
467
468
469
470
471
472
473
    self._run_and_report_benchmark(
        experiment_name='benchmark_xla_1_gpu_fp16_tweaked',
        num_gpus=1,
        enable_xla=True,
        distribution_strategy='one_device',
        dtype='float16',
        per_replica_batch_size=256,
        gpu_thread_mode='gpu_private')

  def benchmark_xla_1_gpu_fp16_dynamic(self):
    """Tests Keras model with XLA, 1 GPU, fp16, and dynamic loss scaling."""
Hongkun Yu's avatar
Hongkun Yu committed
474
    self._setup()
Allen Wang's avatar
Allen Wang committed
475
476
477
478
479
480
481
482
483
484
485
    self._run_and_report_benchmark(
        experiment_name='benchmark_xla_1_gpu_fp16_dynamic',
        num_gpus=1,
        enable_xla=True,
        distribution_strategy='one_device',
        dtype='float16',
        per_replica_batch_size=256,
        loss_scale='dynamic')

  def benchmark_8_gpu(self):
    """Tests Keras model with 8 GPUs."""
Hongkun Yu's avatar
Hongkun Yu committed
486
    self._setup()
Allen Wang's avatar
Allen Wang committed
487
488
489
490
491
492
493
494
    self._run_and_report_benchmark(
        experiment_name='benchmark_8_gpu',
        num_gpus=8,
        distribution_strategy='mirrored',
        per_replica_batch_size=128)

  def benchmark_8_gpu_tweaked(self):
    """Tests Keras model with manual config tuning and 8 GPUs."""
Hongkun Yu's avatar
Hongkun Yu committed
495
    self._setup()
Allen Wang's avatar
Allen Wang committed
496
497
498
499
500
501
502
503
504
    self._run_and_report_benchmark(
        experiment_name='benchmark_8_gpu_tweaked',
        num_gpus=8,
        distribution_strategy='mirrored',
        per_replica_batch_size=128,
        dataset_num_private_threads=14)

  def benchmark_xla_8_gpu(self):
    """Tests Keras model with XLA and 8 GPUs."""
Hongkun Yu's avatar
Hongkun Yu committed
505
    self._setup()
Allen Wang's avatar
Allen Wang committed
506
507
508
509
510
511
512
513
514
    self._run_and_report_benchmark(
        experiment_name='benchmark_xla_8_gpu',
        num_gpus=8,
        enable_xla=True,
        distribution_strategy='mirrored',
        per_replica_batch_size=128)

  def benchmark_xla_8_gpu_tweaked(self):
    """Tests Keras model with manual config tuning, 8 GPUs, and XLA."""
Hongkun Yu's avatar
Hongkun Yu committed
515
    self._setup()
Allen Wang's avatar
Allen Wang committed
516
517
518
519
520
521
522
523
524
525
526
    self._run_and_report_benchmark(
        experiment_name='benchmark_xla_8_gpu_tweaked',
        num_gpus=8,
        enable_xla=True,
        distribution_strategy='mirrored',
        per_replica_batch_size=128,
        gpu_thread_mode='gpu_private',
        dataset_num_private_threads=24)

  def benchmark_8_gpu_fp16(self):
    """Tests Keras model with 8 GPUs and fp16."""
Hongkun Yu's avatar
Hongkun Yu committed
527
    self._setup()
Allen Wang's avatar
Allen Wang committed
528
529
530
531
532
533
534
535
536
    self._run_and_report_benchmark(
        experiment_name='benchmark_8_gpu_fp16',
        num_gpus=8,
        dtype='float16',
        distribution_strategy='mirrored',
        per_replica_batch_size=256)

  def benchmark_8_gpu_fp16_tweaked(self):
    """Tests Keras model with 8 GPUs, fp16, and manual config tuning."""
Hongkun Yu's avatar
Hongkun Yu committed
537
    self._setup()
Allen Wang's avatar
Allen Wang committed
538
539
540
541
542
543
    self._run_and_report_benchmark(
        experiment_name='benchmark_8_gpu_fp16_tweaked',
        num_gpus=8,
        dtype='float16',
        distribution_strategy='mirrored',
        per_replica_batch_size=256,
544
545
        gpu_thread_mode='gpu_private',
        dataset_num_private_threads=40)
Allen Wang's avatar
Allen Wang committed
546
547
548

  def benchmark_8_gpu_fp16_dynamic_tweaked(self):
    """Tests Keras model with 8 GPUs, fp16, dynamic loss scaling, and tuned."""
Hongkun Yu's avatar
Hongkun Yu committed
549
    self._setup()
Allen Wang's avatar
Allen Wang committed
550
551
552
553
554
555
556
    self._run_and_report_benchmark(
        experiment_name='benchmark_8_gpu_fp16_dynamic_tweaked',
        num_gpus=8,
        dtype='float16',
        distribution_strategy='mirrored',
        per_replica_batch_size=256,
        loss_scale='dynamic',
557
558
        gpu_thread_mode='gpu_private',
        dataset_num_private_threads=40)
Allen Wang's avatar
Allen Wang committed
559
560
561

  def benchmark_xla_8_gpu_fp16(self):
    """Tests Keras model with XLA, 8 GPUs and fp16."""
Hongkun Yu's avatar
Hongkun Yu committed
562
    self._setup()
Allen Wang's avatar
Allen Wang committed
563
564
565
566
567
568
569
570
571
572
    self._run_and_report_benchmark(
        experiment_name='benchmark_xla_8_gpu_fp16',
        dtype='float16',
        num_gpus=8,
        enable_xla=True,
        distribution_strategy='mirrored',
        per_replica_batch_size=256)

  def benchmark_xla_8_gpu_fp16_tweaked(self):
    """Test Keras model with manual config tuning, XLA, 8 GPUs and fp16."""
Hongkun Yu's avatar
Hongkun Yu committed
573
    self._setup()
Allen Wang's avatar
Allen Wang committed
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
    self._run_and_report_benchmark(
        experiment_name='benchmark_xla_8_gpu_fp16_tweaked',
        dtype='float16',
        num_gpus=8,
        enable_xla=True,
        distribution_strategy='mirrored',
        per_replica_batch_size=256,
        gpu_thread_mode='gpu_private',
        dataset_num_private_threads=48)

  def benchmark_xla_8_gpu_fp16_tweaked_delay_measure(self):
    """Tests with manual config tuning, XLA, 8 GPUs and fp16.

    Delay performance measurement for stable performance on 96 vCPU platforms.
    """
Hongkun Yu's avatar
Hongkun Yu committed
589
    self._setup()
Allen Wang's avatar
Allen Wang committed
590
591
592
593
594
595
596
597
    self._run_and_report_benchmark(
        experiment_name='benchmark_xla_8_gpu_fp16_tweaked_delay_measure',
        dtype='float16',
        num_gpus=8,
        enable_xla=True,
        distribution_strategy='mirrored',
        per_replica_batch_size=256,
        gpu_thread_mode='gpu_private',
598
        dataset_num_private_threads=48,
Allen Wang's avatar
Allen Wang committed
599
600
601
602
        steps=310)

  def benchmark_xla_8_gpu_fp16_dynamic_tweaked(self):
    """Tests Keras model with config tuning, XLA, 8 GPUs and dynamic fp16."""
Hongkun Yu's avatar
Hongkun Yu committed
603
    self._setup()
Allen Wang's avatar
Allen Wang committed
604
605
606
607
608
609
610
611
612
613
614
    self._run_and_report_benchmark(
        experiment_name='benchmark_xla_8_gpu_fp16_dynamic_tweaked',
        dtype='float16',
        num_gpus=8,
        enable_xla=True,
        distribution_strategy='mirrored',
        per_replica_batch_size=256,
        gpu_thread_mode='gpu_private',
        loss_scale='dynamic',
        dataset_num_private_threads=48)

Zongwei Zhou's avatar
Zongwei Zhou committed
615
616
  def benchmark_2x2_tpu_bf16(self):
    """Test Keras model with 2x2 TPU, bf16."""
Hongkun Yu's avatar
Hongkun Yu committed
617
    self._setup()
Allen Wang's avatar
Allen Wang committed
618
    self._run_and_report_benchmark(
Zongwei Zhou's avatar
Zongwei Zhou committed
619
        experiment_name='benchmark_2x2_tpu_bf16',
Allen Wang's avatar
Allen Wang committed
620
        dtype='bfloat16',
David Chen's avatar
David Chen committed
621
        num_tpus=8,
Allen Wang's avatar
Allen Wang committed
622
623
624
        distribution_strategy='tpu',
        per_replica_batch_size=128)

Zongwei Zhou's avatar
Zongwei Zhou committed
625
626
  def benchmark_4x4_tpu_bf16(self):
    """Test Keras model with 4x4 TPU, bf16."""
Hongkun Yu's avatar
Hongkun Yu committed
627
    self._setup()
Allen Wang's avatar
Allen Wang committed
628
    self._run_and_report_benchmark(
Zongwei Zhou's avatar
Zongwei Zhou committed
629
        experiment_name='benchmark_4x4_tpu_bf16',
Allen Wang's avatar
Allen Wang committed
630
        dtype='bfloat16',
David Chen's avatar
David Chen committed
631
        num_tpus=32,
Allen Wang's avatar
Allen Wang committed
632
633
634
        distribution_strategy='tpu',
        per_replica_batch_size=128)

Zongwei Zhou's avatar
Zongwei Zhou committed
635
636
637
638
639
640
641
642
643
644
  def benchmark_8x8_tpu_bf16(self):
    """Test Keras model with 8x8 TPU, bf16."""
    self._setup()
    self._run_and_report_benchmark(
        experiment_name='benchmark_8x8_tpu_bf16',
        dtype='bfloat16',
        num_tpus=128,
        distribution_strategy='tpu',
        per_replica_batch_size=64)

Allen Wang's avatar
Allen Wang committed
645
646
647
648
649
650
651
  def fill_report_object(self, stats):
    super(Resnet50KerasClassifierBenchmarkBase, self).fill_report_object(
        stats,
        total_batch_size=FLAGS.batch_size,
        log_steps=FLAGS.log_steps)


Toby Boyd's avatar
Toby Boyd committed
652
653
654
class Resnet50KerasBenchmarkBase(keras_benchmark.KerasBenchmark):
  """Resnet50 benchmarks."""

David Chen's avatar
David Chen committed
655
  def __init__(self, output_dir=None, default_flags=None, tpu=None):
656
    flag_methods = [resnet_imagenet_main.define_imagenet_keras_flags]
Toby Boyd's avatar
Toby Boyd committed
657
658
659
660

    super(Resnet50KerasBenchmarkBase, self).__init__(
        output_dir=output_dir,
        flag_methods=flag_methods,
David Chen's avatar
David Chen committed
661
662
        default_flags=default_flags,
        tpu=tpu)
Toby Boyd's avatar
Toby Boyd committed
663

664
  @benchmark_wrappers.enable_runtime_flags
665
  def _run_and_report_benchmark(self, skip_steps=None):
666
    start_time_sec = time.time()
667
    stats = resnet_imagenet_main.run(FLAGS)
668
    wall_time_sec = time.time() - start_time_sec
669
    # Number of logged step time entries that are excluded in performance
670
671
672
    # report. We keep results from last 100 batches, or skip the steps based on
    # input skip_steps.
    warmup = (skip_steps or (FLAGS.train_steps - 100)) // FLAGS.log_steps
673
674
675
676
677

    super(Resnet50KerasBenchmarkBase, self)._report_benchmark(
        stats,
        wall_time_sec,
        total_batch_size=FLAGS.batch_size,
678
        log_steps=FLAGS.log_steps,
David Chen's avatar
David Chen committed
679
680
        warmup=warmup,
        start_time_sec=start_time_sec)
Toby Boyd's avatar
Toby Boyd committed
681
682

  def benchmark_1_gpu_no_dist_strat(self):
Haoyu Zhang's avatar
Haoyu Zhang committed
683
    """Test Keras model with 1 GPU, no distribution strategy."""
Toby Boyd's avatar
Toby Boyd committed
684
685
686
687
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
688
    FLAGS.distribution_strategy = 'off'
689
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_no_dist_strat')
Toby Boyd's avatar
Toby Boyd committed
690
    FLAGS.batch_size = 128
691
    self._run_and_report_benchmark()
Toby Boyd's avatar
Toby Boyd committed
692

693
694
695
696
697
698
699
700
701
702
703
704
705
  def benchmark_1_gpu_no_dist_strat_run_eagerly(self):
    """Test Keras model with 1 GPU, no distribution strategy, run eagerly."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
    FLAGS.run_eagerly = True
    FLAGS.distribution_strategy = 'off'
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_1_gpu_no_dist_strat_run_eagerly')
    FLAGS.batch_size = 64
    self._run_and_report_benchmark()

706
707
708
709
710
711
712
713
714
715
716
717
718
719
  def benchmark_1_gpu_no_dist_strat_run_eagerly_tweaked(self):
    """Test Keras model with 1 GPU, no distribution strategy, run eagerly."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
    FLAGS.run_eagerly = True
    FLAGS.explicit_gpu_placement = True
    FLAGS.distribution_strategy = 'off'
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_1_gpu_no_dist_strat_run_eagerly_tweaked')
    FLAGS.batch_size = 64
    self._run_and_report_benchmark()

720
721
722
723
724
725
726
727
728
729
730
731
732
733
  def benchmark_1_gpu_no_dist_strat_run_eagerly_fp16(self):
    """Test with 1 GPU, no distribution strategy, fp16, run eagerly."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
    FLAGS.run_eagerly = True
    FLAGS.distribution_strategy = 'off'
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_1_gpu_no_dist_strat_run_eagerly_fp16')
    FLAGS.dtype = 'fp16'
    FLAGS.batch_size = 128
    self._run_and_report_benchmark()

734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
  def benchmark_1_gpu_no_dist_strat_run_eagerly_fp16_tweaked(self):
    """Test with 1 GPU, no distribution strategy, fp16, run eagerly."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
    FLAGS.run_eagerly = True
    FLAGS.explicit_gpu_placement = True
    FLAGS.distribution_strategy = 'off'
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_1_gpu_no_dist_strat_run_eagerly_fp16_tweaked')
    FLAGS.dtype = 'fp16'
    FLAGS.batch_size = 128
    self._run_and_report_benchmark()

Toby Boyd's avatar
Toby Boyd committed
749
  def benchmark_1_gpu(self):
Haoyu Zhang's avatar
Haoyu Zhang committed
750
    """Test Keras model with 1 GPU."""
Toby Boyd's avatar
Toby Boyd committed
751
752
753
754
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
755
    FLAGS.distribution_strategy = 'one_device'
756
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu')
Toby Boyd's avatar
Toby Boyd committed
757
    FLAGS.batch_size = 128
758
    self._run_and_report_benchmark()
Toby Boyd's avatar
Toby Boyd committed
759

760
761
762
763
764
765
  def benchmark_1_gpu_amp(self):
    """Test Keras model with 1 GPU with automatic mixed precision."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
Vinh Nguyen's avatar
Vinh Nguyen committed
766
    FLAGS.dtype = 'fp16'
767
    FLAGS.fp16_implementation = 'graph_rewrite'
768
    FLAGS.distribution_strategy = 'one_device'
769
770
771
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_amp')
    FLAGS.batch_size = 256
    self._run_and_report_benchmark()
772

Haoyu Zhang's avatar
Haoyu Zhang committed
773
774
775
776
777
778
779
  def benchmark_xla_1_gpu(self):
    """Test Keras model with XLA and 1 GPU."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
    FLAGS.enable_xla = True
780
    FLAGS.distribution_strategy = 'one_device'
Haoyu Zhang's avatar
Haoyu Zhang committed
781
782
783
784
    FLAGS.model_dir = self._get_model_dir('benchmark_xla_1_gpu')
    FLAGS.batch_size = 128
    self._run_and_report_benchmark()

785
786
787
788
789
790
  def benchmark_xla_1_gpu_amp(self):
    """Test Keras model with XLA and 1 GPU with automatic mixed precision."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
Vinh Nguyen's avatar
Vinh Nguyen committed
791
    FLAGS.dtype = 'fp16'
792
    FLAGS.fp16_implementation = 'graph_rewrite'
793
    FLAGS.enable_xla = True
794
    FLAGS.distribution_strategy = 'one_device'
795
796
797
798
    FLAGS.model_dir = self._get_model_dir('benchmark_xla_1_gpu_amp')
    FLAGS.batch_size = 256
    self._run_and_report_benchmark()

Reed's avatar
Reed committed
799
  def benchmark_1_gpu_fp16(self):
800
    """Test Keras model with 1 GPU and fp16."""
Reed's avatar
Reed committed
801
802
803
804
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
805
    FLAGS.distribution_strategy = 'one_device'
Reed's avatar
Reed committed
806
807
808
809
810
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_fp16')
    FLAGS.dtype = 'fp16'
    FLAGS.batch_size = 256
    self._run_and_report_benchmark()

811
812
813
814
815
816
  def benchmark_1_gpu_fp16_dynamic(self):
    """Test Keras model with 1 GPU, fp16, and dynamic loss scaling."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
817
    FLAGS.distribution_strategy = 'one_device'
818
819
820
821
822
823
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_fp16_dynamic')
    FLAGS.dtype = 'fp16'
    FLAGS.batch_size = 256
    FLAGS.loss_scale = 'dynamic'
    self._run_and_report_benchmark()

Reed's avatar
Reed committed
824
825
826
827
828
829
830
  def benchmark_xla_1_gpu_fp16(self):
    """Test Keras model with XLA, 1 GPU and fp16."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
    FLAGS.enable_xla = True
831
    FLAGS.distribution_strategy = 'one_device'
Reed's avatar
Reed committed
832
833
834
835
836
    FLAGS.model_dir = self._get_model_dir('benchmark_xla_1_gpu_fp16')
    FLAGS.dtype = 'fp16'
    FLAGS.batch_size = 256
    self._run_and_report_benchmark()

837
838
839
840
841
842
843
  def benchmark_xla_1_gpu_fp16_tweaked(self):
    """Test Keras model with XLA, 1 GPU, fp16, and manual config tuning."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
    FLAGS.enable_xla = True
844
    FLAGS.distribution_strategy = 'one_device'
845
846
847
848
    FLAGS.model_dir = self._get_model_dir('benchmark_xla_1_gpu_fp16_tweaked')
    FLAGS.dtype = 'fp16'
    FLAGS.batch_size = 256
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
849
850
    self._run_and_report_benchmark()

851
852
853
854
855
856
857
  def benchmark_xla_1_gpu_fp16_dynamic(self):
    """Test Keras model with XLA, 1 GPU, fp16, and dynamic loss scaling."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
    FLAGS.enable_xla = True
858
    FLAGS.distribution_strategy = 'one_device'
859
860
861
862
863
864
    FLAGS.model_dir = self._get_model_dir('benchmark_xla_1_gpu_fp16_dynamic')
    FLAGS.dtype = 'fp16'
    FLAGS.batch_size = 256
    FLAGS.loss_scale = 'dynamic'
    self._run_and_report_benchmark()

Toby Boyd's avatar
Toby Boyd committed
865
  def benchmark_8_gpu(self):
Haoyu Zhang's avatar
Haoyu Zhang committed
866
    """Test Keras model with 8 GPUs."""
Toby Boyd's avatar
Toby Boyd committed
867
868
869
870
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.enable_eager = True
871
    FLAGS.distribution_strategy = 'mirrored'
872
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu')
Toby Boyd's avatar
Toby Boyd committed
873
    FLAGS.batch_size = 128 * 8  # 8 GPUs
874
    self._run_and_report_benchmark()
875

876
877
878
879
880
881
  def benchmark_8_gpu_amp(self):
    """Test Keras model with 8 GPUs with automatic mixed precision."""
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.enable_eager = True
Vinh Nguyen's avatar
Vinh Nguyen committed
882
    FLAGS.dtype = 'fp16'
883
    FLAGS.fp16_implementation = 'graph_rewrite'
884
    FLAGS.distribution_strategy = 'mirrored'
885
886
887
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_amp')
    FLAGS.batch_size = 256 * 8  # 8 GPUs
    self._run_and_report_benchmark()
888

889
  def benchmark_8_gpu_tweaked(self):
Haoyu Zhang's avatar
Haoyu Zhang committed
890
    """Test Keras model with manual config tuning and 8 GPUs."""
891
892
893
894
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.enable_eager = True
895
    FLAGS.distribution_strategy = 'mirrored'
896
897
898
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_tweaked')
    FLAGS.batch_size = 128 * 8  # 8 GPUs
    FLAGS.datasets_num_private_threads = 14
899
900
    self._run_and_report_benchmark()

Haoyu Zhang's avatar
Haoyu Zhang committed
901
902
903
904
905
906
907
  def benchmark_xla_8_gpu(self):
    """Test Keras model with XLA and 8 GPUs."""
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.enable_eager = True
    FLAGS.enable_xla = True
908
    FLAGS.distribution_strategy = 'mirrored'
Haoyu Zhang's avatar
Haoyu Zhang committed
909
    FLAGS.model_dir = self._get_model_dir('benchmark_xla_8_gpu')
910
    FLAGS.batch_size = 128 * 8  # 8 GPUs
Haoyu Zhang's avatar
Haoyu Zhang committed
911
912
    self._run_and_report_benchmark()

913
914
915
916
917
918
  def benchmark_xla_8_gpu_amp(self):
    """Test Keras model with XLA and 8 GPUs with automatic mixed precision."""
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.enable_eager = True
Vinh Nguyen's avatar
Vinh Nguyen committed
919
    FLAGS.dtype = 'fp16'
920
    FLAGS.fp16_implementation = 'graph_rewrite'
921
    FLAGS.enable_xla = True
922
    FLAGS.distribution_strategy = 'mirrored'
923
924
925
    FLAGS.model_dir = self._get_model_dir('benchmark_xla_8_gpu_amp')
    FLAGS.batch_size = 256 * 8  # 8 GPUs
    self._run_and_report_benchmark()
926

927
928
929
930
931
932
933
  def benchmark_xla_8_gpu_tweaked(self):
    """Test Keras model with manual config tuning, 8 GPUs, and XLA."""
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.enable_eager = True
    FLAGS.enable_xla = True
934
    FLAGS.distribution_strategy = 'mirrored'
935
936
937
938
939
940
    FLAGS.model_dir = self._get_model_dir('benchmark_xla_8_gpu_tweaked')
    FLAGS.batch_size = 128 * 8
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
    FLAGS.datasets_num_private_threads = 24
    self._run_and_report_benchmark()

Reed's avatar
Reed committed
941
  def benchmark_8_gpu_fp16(self):
942
    """Test Keras model with 8 GPUs and fp16."""
Reed's avatar
Reed committed
943
944
945
    self._setup()

    FLAGS.num_gpus = 8
946
    FLAGS.dtype = 'fp16'
Reed's avatar
Reed committed
947
    FLAGS.enable_eager = True
948
    FLAGS.distribution_strategy = 'mirrored'
Reed's avatar
Reed committed
949
950
951
952
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_fp16')
    FLAGS.batch_size = 256 * 8  # 8 GPUs
    self._run_and_report_benchmark()

953
  def benchmark_8_gpu_fp16_tweaked(self):
954
    """Test Keras model with 8 GPUs, fp16, and manual config tuning."""
955
956
957
958
959
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.dtype = 'fp16'
    FLAGS.enable_eager = True
960
    FLAGS.distribution_strategy = 'mirrored'
961
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_fp16_tweaked')
962
963
    FLAGS.batch_size = 256 * 8  # 8 GPUs
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
964
    FLAGS.dataset_num_private_threads = 40
965
966
    self._run_and_report_benchmark()

967
  def benchmark_8_gpu_fp16_dynamic_tweaked(self):
Toby Boyd's avatar
Toby Boyd committed
968
    """Test Keras model with 8 GPUs, fp16, dynamic loss scaling, and tuned."""
969
970
971
972
973
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.dtype = 'fp16'
    FLAGS.enable_eager = True
974
    FLAGS.distribution_strategy = 'mirrored'
975
976
977
978
979
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_8_gpu_fp16_dynamic_tweaked')
    FLAGS.batch_size = 256 * 8  # 8 GPUs
    FLAGS.loss_scale = 'dynamic'
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
980
    FLAGS.dataset_num_private_threads = 40
981
982
    self._run_and_report_benchmark()

Reed's avatar
Reed committed
983
  def benchmark_xla_8_gpu_fp16(self):
984
    """Test Keras model with XLA, 8 GPUs and fp16."""
Reed's avatar
Reed committed
985
986
987
    self._setup()

    FLAGS.num_gpus = 8
988
    FLAGS.dtype = 'fp16'
Reed's avatar
Reed committed
989
990
    FLAGS.enable_eager = True
    FLAGS.enable_xla = True
991
    FLAGS.distribution_strategy = 'mirrored'
Reed's avatar
Reed committed
992
993
    FLAGS.model_dir = self._get_model_dir('benchmark_xla_8_gpu_fp16')
    FLAGS.batch_size = 256 * 8  # 8 GPUs
994
995
    self._run_and_report_benchmark()

996
997
998
999
1000
1001
1002
1003
  def benchmark_xla_8_gpu_fp16_tweaked(self):
    """Test Keras model with manual config tuning, XLA, 8 GPUs and fp16."""
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.dtype = 'fp16'
    FLAGS.enable_eager = True
    FLAGS.enable_xla = True
1004
    FLAGS.distribution_strategy = 'mirrored'
1005
1006
    FLAGS.model_dir = self._get_model_dir('benchmark_xla_8_gpu_fp16_tweaked')
    FLAGS.batch_size = 256 * 8  # 8 GPUs
1007
1008
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
    FLAGS.datasets_num_private_threads = 48
1009
1010
    self._run_and_report_benchmark()

1011
  def benchmark_xla_8_gpu_fp16_tweaked_delay_measure(self):
Haoyu Zhang's avatar
Haoyu Zhang committed
1012
1013
1014
    """Test with manual config tuning, XLA, 8 GPUs and fp16.

    Delay performance measurement for stable performance on 96 vCPU platforms.
1015
1016
1017
1018
1019
1020
1021
    """
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.dtype = 'fp16'
    FLAGS.enable_eager = True
    FLAGS.enable_xla = True
1022
    FLAGS.distribution_strategy = 'mirrored'
1023
1024
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_xla_8_gpu_fp16_tweaked_delay_measure')
1025
    FLAGS.batch_size = 256 * 8
1026
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
1027
    FLAGS.datasets_num_private_threads = 48
1028
1029
1030
    FLAGS.train_steps = 310
    self._run_and_report_benchmark()

1031
1032
1033
1034
1035
1036
1037
1038
  def benchmark_xla_8_gpu_fp16_dynamic_tweaked(self):
    """Test Keras model with config tuning, XLA, 8 GPUs and dynamic fp16."""
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.dtype = 'fp16'
    FLAGS.enable_eager = True
    FLAGS.enable_xla = True
1039
    FLAGS.distribution_strategy = 'mirrored'
1040
1041
1042
1043
1044
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_xla_8_gpu_fp16_dynamic_tweaked')
    FLAGS.batch_size = 256 * 8  # 8 GPUs
    FLAGS.loss_scale = 'dynamic'
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
1045
    FLAGS.datasets_num_private_threads = 48
1046
1047
    self._run_and_report_benchmark()

Zongwei Zhou's avatar
Zongwei Zhou committed
1048
1049
  def benchmark_2x2_tpu_bf16(self):
    """Test Keras model with 2x2 TPU, bf16."""
David Chen's avatar
David Chen committed
1050
1051
1052
1053
    self._setup()

    FLAGS.dtype = 'bf16'
    FLAGS.distribution_strategy = 'tpu'
Zongwei Zhou's avatar
Zongwei Zhou committed
1054
    FLAGS.model_dir = self._get_model_dir('benchmark_2x2_tpu_bf16')
David Chen's avatar
David Chen committed
1055
1056
1057
    FLAGS.batch_size = 1024
    self._run_and_report_benchmark()

Zongwei Zhou's avatar
Zongwei Zhou committed
1058
1059
  def benchmark_4x4_tpu_bf16(self):
    """Test Keras model with 4x4 TPU, bf16."""
David Chen's avatar
David Chen committed
1060
1061
1062
1063
    self._setup()

    FLAGS.dtype = 'bf16'
    FLAGS.distribution_strategy = 'tpu'
Zongwei Zhou's avatar
Zongwei Zhou committed
1064
    FLAGS.model_dir = self._get_model_dir('benchmark_4x4_tpu_bf16')
David Chen's avatar
David Chen committed
1065
1066
1067
    FLAGS.batch_size = 4096
    self._run_and_report_benchmark()

Zongwei Zhou's avatar
Zongwei Zhou committed
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
  def benchmark_8x8_tpu_bf16(self):
    """Test Keras model with 8x8 TPU, bf16."""
    self._setup()

    FLAGS.dtype = 'bf16'
    FLAGS.distribution_strategy = 'tpu'
    FLAGS.model_dir = self._get_model_dir('benchmark_8x8_tpu_bf16')
    FLAGS.batch_size = 8192
    self._run_and_report_benchmark()

Toby Boyd's avatar
Toby Boyd committed
1078
1079
1080
1081
1082
1083
  def fill_report_object(self, stats):
    super(Resnet50KerasBenchmarkBase, self).fill_report_object(
        stats,
        total_batch_size=FLAGS.batch_size,
        log_steps=FLAGS.log_steps)

Toby Boyd's avatar
Toby Boyd committed
1084

Allen Wang's avatar
Allen Wang committed
1085
class Resnet50KerasBenchmarkSynth(Resnet50KerasClassifierBenchmarkBase):
Toby Boyd's avatar
Toby Boyd committed
1086
1087
  """Resnet50 synthetic benchmark tests."""

David Chen's avatar
David Chen committed
1088
  def __init__(self, output_dir=None, root_data_dir=None, tpu=None, **kwargs):
Toby Boyd's avatar
Toby Boyd committed
1089
1090
1091
    def_flags = {}
    def_flags['log_steps'] = 10

1092
    super(Resnet50KerasBenchmarkSynth, self).__init__(
Allen Wang's avatar
Allen Wang committed
1093
1094
        output_dir=output_dir, default_flags=def_flags, tpu=tpu,
        dataset_builder='synthetic', train_epochs=1, train_steps=110)
Toby Boyd's avatar
Toby Boyd committed
1095
1096


Allen Wang's avatar
Allen Wang committed
1097
class Resnet50KerasBenchmarkReal(Resnet50KerasClassifierBenchmarkBase):
Toby Boyd's avatar
Toby Boyd committed
1098
1099
  """Resnet50 real data benchmark tests."""

David Chen's avatar
David Chen committed
1100
  def __init__(self, output_dir=None, root_data_dir=None, tpu=None, **kwargs):
Hongkun Yu's avatar
Hongkun Yu committed
1101
    data_dir = os.path.join(root_data_dir, 'imagenet')
Toby Boyd's avatar
Toby Boyd committed
1102
1103
1104
    def_flags = {}
    def_flags['log_steps'] = 10

1105
    super(Resnet50KerasBenchmarkReal, self).__init__(
Allen Wang's avatar
Allen Wang committed
1106
1107
1108
        output_dir=output_dir, default_flags=def_flags, tpu=tpu,
        dataset_builder='records', train_epochs=1, train_steps=110,
        data_dir=data_dir)
1109
1110


1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
class Resnet50KerasBenchmarkRemoteData(Resnet50KerasBenchmarkBase):
  """Resnet50 real data (stored in remote storage) benchmark tests."""

  def __init__(self, output_dir=None, root_data_dir=None, **kwargs):
    def_flags = {}
    def_flags['skip_eval'] = True
    def_flags['report_accuracy_metrics'] = False
    def_flags['data_dir'] = os.path.join(root_data_dir, 'imagenet')
    # Defining multiple epochs overrides the train_steps setting in benchmarks.
    def_flags['train_epochs'] = 2
    # Cache dataset so performance is stable after the first epoch.
    def_flags['training_dataset_cache'] = True
    def_flags['log_steps'] = 100
1124
1125
1126
1127
    # Note that for single GPU and pure eager tests which are less likely to be
    # input bound and more stable, these tests will run for shorter time by
    # overriding FLAGS.train_epochs, train_seteps, log_steps in benchmark
    # methods, and skip_steps in _run_and_report_benchmark().
1128
1129
1130
1131

    super(Resnet50KerasBenchmarkRemoteData, self).__init__(
        output_dir=output_dir, default_flags=def_flags)

1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
  def _override_flags_to_run_test_shorter(self):
    FLAGS.train_epochs = 1
    FLAGS.train_steps = 300
    FLAGS.log_steps = 10

  def benchmark_1_gpu_no_dist_strat(self):
    """Test Keras model with 1 GPU, no distribution strategy."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
    FLAGS.distribution_strategy = 'off'
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_no_dist_strat')
    FLAGS.batch_size = 128
    self._override_flags_to_run_test_shorter()
    self._run_and_report_benchmark()

  def benchmark_1_gpu_no_dist_strat_run_eagerly(self):
    """Test Keras model with 1 GPU, no distribution strategy, run eagerly."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
    FLAGS.run_eagerly = True
    FLAGS.distribution_strategy = 'off'
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_1_gpu_no_dist_strat_run_eagerly')
    FLAGS.batch_size = 64
    self._override_flags_to_run_test_shorter()
    self._run_and_report_benchmark()

  def benchmark_1_gpu_no_dist_strat_run_eagerly_tweaked(self):
    """Test Keras model with 1 GPU, no distribution strategy, run eagerly."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
    FLAGS.run_eagerly = True
    FLAGS.explicit_gpu_placement = True
    FLAGS.distribution_strategy = 'off'
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_1_gpu_no_dist_strat_run_eagerly_tweaked')
    FLAGS.batch_size = 64
    self._override_flags_to_run_test_shorter()
    self._run_and_report_benchmark()

  def benchmark_1_gpu_no_dist_strat_run_eagerly_fp16(self):
    """Test with 1 GPU, no distribution strategy, fp16, run eagerly."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
    FLAGS.run_eagerly = True
    FLAGS.distribution_strategy = 'off'
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_1_gpu_no_dist_strat_run_eagerly_fp16')
    FLAGS.dtype = 'fp16'
    FLAGS.batch_size = 128
    self._override_flags_to_run_test_shorter()
    self._run_and_report_benchmark()

  def benchmark_1_gpu_no_dist_strat_run_eagerly_fp16_tweaked(self):
    """Test with 1 GPU, no distribution strategy, fp16, run eagerly."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
    FLAGS.run_eagerly = True
    FLAGS.explicit_gpu_placement = True
    FLAGS.distribution_strategy = 'off'
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_1_gpu_no_dist_strat_run_eagerly_fp16_tweaked')
    FLAGS.dtype = 'fp16'
    FLAGS.batch_size = 128
    self._override_flags_to_run_test_shorter()
    self._run_and_report_benchmark()

  def benchmark_1_gpu(self):
    """Test Keras model with 1 GPU."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
    FLAGS.distribution_strategy = 'one_device'
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu')
    FLAGS.batch_size = 128
    self._override_flags_to_run_test_shorter()
    self._run_and_report_benchmark()

  def benchmark_1_gpu_amp(self):
    """Test Keras model with 1 GPU with automatic mixed precision."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
    FLAGS.dtype = 'fp16'
    FLAGS.fp16_implementation = 'graph_rewrite'
    FLAGS.distribution_strategy = 'one_device'
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_amp')
    FLAGS.batch_size = 256
    self._override_flags_to_run_test_shorter()
    self._run_and_report_benchmark()

  def benchmark_xla_1_gpu(self):
    """Test Keras model with XLA and 1 GPU."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
    FLAGS.enable_xla = True
    FLAGS.distribution_strategy = 'one_device'
    FLAGS.model_dir = self._get_model_dir('benchmark_xla_1_gpu')
    FLAGS.batch_size = 128
    self._override_flags_to_run_test_shorter()
    self._run_and_report_benchmark()

  def benchmark_xla_1_gpu_amp(self):
    """Test Keras model with XLA and 1 GPU with automatic mixed precision."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
    FLAGS.dtype = 'fp16'
    FLAGS.fp16_implementation = 'graph_rewrite'
    FLAGS.enable_xla = True
    FLAGS.distribution_strategy = 'one_device'
    FLAGS.model_dir = self._get_model_dir('benchmark_xla_1_gpu_amp')
    FLAGS.batch_size = 256
    self._override_flags_to_run_test_shorter()
    self._run_and_report_benchmark()

  def benchmark_1_gpu_fp16(self):
    """Test Keras model with 1 GPU and fp16."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
    FLAGS.distribution_strategy = 'one_device'
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_fp16')
    FLAGS.dtype = 'fp16'
    FLAGS.batch_size = 256
    self._override_flags_to_run_test_shorter()
    self._run_and_report_benchmark()

  def benchmark_1_gpu_fp16_dynamic(self):
    """Test Keras model with 1 GPU, fp16, and dynamic loss scaling."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
    FLAGS.distribution_strategy = 'one_device'
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_fp16_dynamic')
    FLAGS.dtype = 'fp16'
    FLAGS.batch_size = 256
    FLAGS.loss_scale = 'dynamic'
    self._override_flags_to_run_test_shorter()
    self._run_and_report_benchmark()

  def benchmark_xla_1_gpu_fp16(self):
    """Test Keras model with XLA, 1 GPU and fp16."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
    FLAGS.enable_xla = True
    FLAGS.distribution_strategy = 'one_device'
    FLAGS.model_dir = self._get_model_dir('benchmark_xla_1_gpu_fp16')
    FLAGS.dtype = 'fp16'
    FLAGS.batch_size = 256
    self._override_flags_to_run_test_shorter()
    self._run_and_report_benchmark()

  def benchmark_xla_1_gpu_fp16_tweaked(self):
    """Test Keras model with XLA, 1 GPU, fp16, and manual config tuning."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
    FLAGS.enable_xla = True
    FLAGS.distribution_strategy = 'one_device'
    FLAGS.model_dir = self._get_model_dir('benchmark_xla_1_gpu_fp16_tweaked')
    FLAGS.dtype = 'fp16'
    FLAGS.batch_size = 256
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
    self._override_flags_to_run_test_shorter()
    self._run_and_report_benchmark()

  def benchmark_xla_1_gpu_fp16_dynamic(self):
    """Test Keras model with XLA, 1 GPU, fp16, and dynamic loss scaling."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
    FLAGS.enable_xla = True
    FLAGS.distribution_strategy = 'one_device'
    FLAGS.model_dir = self._get_model_dir('benchmark_xla_1_gpu_fp16_dynamic')
    FLAGS.dtype = 'fp16'
    FLAGS.batch_size = 256
    FLAGS.loss_scale = 'dynamic'
    self._override_flags_to_run_test_shorter()
    self._run_and_report_benchmark()

1334
  @benchmark_wrappers.enable_runtime_flags
1335
  def _run_and_report_benchmark(self):
1336
1337
1338
1339
1340
1341
1342
1343
    if FLAGS.num_gpus == 1 or FLAGS.run_eagerly:
      # For single GPU and pure eager tests which are less likely to be input
      # bound and more stable, run for shorter time and use the default
      # skip_steps.
      skip_steps = None
    else:
      # skip the first epoch for performance measurement.
      skip_steps = 600
1344
    super(Resnet50KerasBenchmarkRemoteData,
1345
          self)._run_and_report_benchmark(skip_steps=skip_steps)
1346
1347


1348
class TrivialKerasBenchmarkReal(keras_benchmark.KerasBenchmark):
1349
1350
1351
  """Trivial model with real data benchmark tests."""

  def __init__(self, output_dir=None, root_data_dir=None, **kwargs):
1352
    flag_methods = [resnet_imagenet_main.define_imagenet_keras_flags]
Toby Boyd's avatar
Toby Boyd committed
1353

1354
    def_flags = {}
1355
    def_flags['use_trivial_model'] = True
1356
    def_flags['skip_eval'] = True
1357
    def_flags['report_accuracy_metrics'] = False
1358
    def_flags['dtype'] = 'fp16'
1359
    def_flags['data_dir'] = os.path.join(root_data_dir, 'imagenet')
1360
1361
    def_flags['train_steps'] = 600
    def_flags['log_steps'] = 100
1362
    def_flags['distribution_strategy'] = 'mirrored'
1363

1364
    super(TrivialKerasBenchmarkReal, self).__init__(
1365
1366
1367
1368
        output_dir=output_dir,
        flag_methods=flag_methods,
        default_flags=def_flags)

1369
  @benchmark_wrappers.enable_runtime_flags
1370
1371
  def _run_and_report_benchmark(self):
    start_time_sec = time.time()
1372
    stats = resnet_imagenet_main.run(FLAGS)
1373
1374
    wall_time_sec = time.time() - start_time_sec

1375
    super(TrivialKerasBenchmarkReal, self)._report_benchmark(
1376
1377
1378
1379
1380
        stats,
        wall_time_sec,
        total_batch_size=FLAGS.batch_size,
        log_steps=FLAGS.log_steps)

1381
1382
1383
1384
1385
1386
1387
  def benchmark_8_gpu_warmup(self):
    """Dummy test that runs over an epoch to warmup the machine."""
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.enable_eager = True
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_warmup')
1388
    FLAGS.batch_size = 256 * 8
1389
1390
1391
    FLAGS.train_steps = 700
    self._run_and_report_benchmark()

1392
  def fill_report_object(self, stats):
1393
    super(TrivialKerasBenchmarkReal, self).fill_report_object(
1394
1395
1396
        stats,
        total_batch_size=FLAGS.batch_size,
        log_steps=FLAGS.log_steps)
1397
1398


1399
1400
1401
1402
class Resnet50MultiWorkerKerasAccuracy(keras_benchmark.KerasBenchmark):
  """Resnet50 distributed accuracy tests with multiple workers."""

  def __init__(self, output_dir=None, root_data_dir=None, **kwargs):
Allen Wang's avatar
Allen Wang committed
1403
    flag_methods = [classifier_trainer.define_imagenet_keras_flags]
1404
    self.data_dir = os.path.join(root_data_dir, 'imagenet')
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
    super(Resnet50MultiWorkerKerasAccuracy, self).__init__(
        output_dir=output_dir, flag_methods=flag_methods)

  def _benchmark_common(self, eager, num_workers, all_reduce_alg):
    """Common to all benchmarks in this class."""
    self._setup()

    num_gpus = 8
    FLAGS.num_gpus = num_gpus
    FLAGS.data_dir = self.data_dir
    FLAGS.train_epochs = 90
    FLAGS.epochs_between_evals = 10
    FLAGS.dtype = 'fp16'
    FLAGS.enable_eager = eager
    FLAGS.enable_xla = False
    FLAGS.distribution_strategy = 'multi_worker_mirrored'
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
1422
    FLAGS.datasets_num_private_threads = 32
1423
1424
1425
1426
1427
1428
1429
1430
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_{}_8_gpu_{}_worker_fp16_{}_tweaked'.format(
            'eager' if eager else 'graph', num_workers, all_reduce_alg))
    FLAGS.batch_size = 256 * num_gpus * num_workers
    FLAGS.all_reduce_alg = all_reduce_alg

    self._run_and_report_benchmark()

1431
  @benchmark_wrappers.enable_runtime_flags
1432
1433
1434
1435
  def _run_and_report_benchmark(self,
                                top_1_min=MIN_TOP_1_ACCURACY,
                                top_1_max=MAX_TOP_1_ACCURACY):
    start_time_sec = time.time()
Allen Wang's avatar
Allen Wang committed
1436
    stats = classifier_trainer.run(flags.FLAGS)
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
    wall_time_sec = time.time() - start_time_sec

    super(Resnet50MultiWorkerKerasAccuracy, self)._report_benchmark(
        stats,
        wall_time_sec,
        top_1_min=top_1_min,
        top_1_max=top_1_max,
        total_batch_size=FLAGS.batch_size,
        log_steps=100)

  def _get_model_dir(self, folder_name):
    return os.path.join(self.output_dir, folder_name)

  def benchmark_eager_8_gpu_2_workers_fp16_ring_tweaked(self):
    """Eager, 8 GPUs per worker, 2 workers, fp16, ring all-reduce."""
    self._benchmark_common(eager=True, num_workers=2, all_reduce_alg='ring')

  def benchmark_eager_8_gpu_2_workers_fp16_nccl_tweaked(self):
    """Eager, 8 GPUs per worker, 2 workers, fp16, nccl all-reduce."""
    self._benchmark_common(eager=True, num_workers=2, all_reduce_alg='nccl')

  def benchmark_eager_8_gpu_8_workers_fp16_ring_tweaked(self):
    """Eager, 8 GPUs per worker, 8 workers, fp16, ring all-reduce."""
    self._benchmark_common(eager=True, num_workers=8, all_reduce_alg='ring')

  def benchmark_eager_8_gpu_8_workers_fp16_nccl_tweaked(self):
    """Eager, 8 GPUs per worker, 8 workers, fp16, nccl all-reduce."""
    self._benchmark_common(eager=True, num_workers=8, all_reduce_alg='nccl')


1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
class Resnet50MultiWorkerKerasBenchmark(Resnet50KerasBenchmarkBase):
  """Resnet50 distributed benchmark tests with multiple workers."""

  def __init__(self, output_dir=None, default_flags=None):
    super(Resnet50MultiWorkerKerasBenchmark, self).__init__(
        output_dir=output_dir, default_flags=default_flags)

  def _benchmark_common(self, eager, num_workers, all_reduce_alg):
    """Common to all benchmarks in this class."""
    self._setup()

    num_gpus = 8
    FLAGS.num_gpus = num_gpus
    FLAGS.dtype = 'fp16'
    FLAGS.enable_eager = eager
    FLAGS.enable_xla = False
    FLAGS.distribution_strategy = 'multi_worker_mirrored'
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
1485
    FLAGS.datasets_num_private_threads = 32
1486
    FLAGS.model_dir = self._get_model_dir(
1487
1488
        'benchmark_{}_8_gpu_{}_worker_fp16_{}_tweaked'.format(
            'eager' if eager else 'graph', num_workers, all_reduce_alg))
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
    FLAGS.batch_size = 256 * num_gpus * num_workers
    FLAGS.all_reduce_alg = all_reduce_alg

    self._run_and_report_benchmark()

  def benchmark_eager_8_gpu_1_worker_fp16_ring_tweaked(self):
    """Eager, 8 GPUs per worker, 1 worker, fp16, ring all-reduce."""
    self._benchmark_common(eager=True, num_workers=1, all_reduce_alg='ring')

  def benchmark_eager_8_gpu_1_worker_fp16_nccl_tweaked(self):
    """Eager, 8 GPUs per worker, 1 worker, fp16, nccl all-reduce."""
    self._benchmark_common(eager=True, num_workers=1, all_reduce_alg='nccl')

  def benchmark_eager_8_gpu_2_workers_fp16_ring_tweaked(self):
    """Eager, 8 GPUs per worker, 2 workers, fp16, ring all-reduce."""
    self._benchmark_common(eager=True, num_workers=2, all_reduce_alg='ring')

  def benchmark_eager_8_gpu_2_workers_fp16_nccl_tweaked(self):
    """Eager, 8 GPUs per worker, 2 workers, fp16, nccl all-reduce."""
    self._benchmark_common(eager=True, num_workers=2, all_reduce_alg='nccl')

  def benchmark_eager_8_gpu_8_workers_fp16_ring_tweaked(self):
    """Eager, 8 GPUs per worker, 8 workers, fp16, ring all-reduce."""
    self._benchmark_common(eager=True, num_workers=8, all_reduce_alg='ring')

  def benchmark_eager_8_gpu_8_workers_fp16_nccl_tweaked(self):
    """Eager, 8 GPUs per worker, 8 workers, fp16, nccl all-reduce."""
    self._benchmark_common(eager=True, num_workers=8, all_reduce_alg='nccl')


Ayush Dubey's avatar
Ayush Dubey committed
1519
class Resnet50MultiWorkerKerasBenchmarkSynth(Resnet50MultiWorkerKerasBenchmark):
1520
  """Resnet50 multi-worker synthetic data benchmark tests."""
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533

  def __init__(self, output_dir=None, root_data_dir=None, **kwargs):
    def_flags = {}
    def_flags['skip_eval'] = True
    def_flags['report_accuracy_metrics'] = False
    def_flags['use_synthetic_data'] = True
    def_flags['train_steps'] = 110
    def_flags['log_steps'] = 10

    super(Resnet50MultiWorkerKerasBenchmarkSynth, self).__init__(
        output_dir=output_dir, default_flags=def_flags)


1534
1535
1536
1537
1538
1539
1540
class Resnet50MultiWorkerKerasBenchmarkReal(Resnet50MultiWorkerKerasBenchmark):
  """Resnet50 multi-worker real data benchmark tests."""

  def __init__(self, output_dir=None, root_data_dir=None, **kwargs):
    def_flags = {}
    def_flags['skip_eval'] = True
    def_flags['report_accuracy_metrics'] = False
1541
    def_flags['data_dir'] = os.path.join(root_data_dir, 'imagenet')
1542
1543
1544
1545
1546
1547
1548
    def_flags['train_steps'] = 110
    def_flags['log_steps'] = 10

    super(Resnet50MultiWorkerKerasBenchmarkReal, self).__init__(
        output_dir=output_dir, default_flags=def_flags)


Jaehong Kim's avatar
Jaehong Kim committed
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
# TODO(kimjaehong): It also should be also cover other metheods of model
# optimization techniques. In that time, this class will change to something
# like 'KerasModelOptimizationAccuracyBase'.
class KerasPruningAccuracyBase(keras_benchmark.KerasBenchmark):
  """Benchmark accuracy tests for pruning method."""

  def __init__(self,
               output_dir=None,
               root_data_dir=None,
               default_flags=None,
               **kwargs):
    """A accuracy benchmark class for pruning method.

    Args:
      output_dir: directory where to output e.g. log files
      root_data_dir: directory under which to look for dataset
      default_flags: default flags
      **kwargs: arbitrary named arguments. This is needed to make the
                constructor forward compatible in case PerfZero provides more
                named arguments before updating the constructor.
    """
    if default_flags is None:
      default_flags = {}
    default_flags['pruning_method'] = 'polynomial_decay'
    default_flags['data_dir'] = os.path.join(root_data_dir, 'imagenet')

    flag_methods = [resnet_imagenet_main.define_imagenet_keras_flags]

    super(KerasPruningAccuracyBase, self).__init__(
        output_dir=output_dir,
        flag_methods=flag_methods,
        default_flags=default_flags,
        **kwargs)

  def benchmark_8_gpu(self):
    """Test Keras model with eager, dist_strat and 8 GPUs."""
    self._setup()
    FLAGS.num_gpus = 8
    FLAGS.batch_size = 32 * 8
    FLAGS.train_epochs = 90
    FLAGS.epochs_between_evals = 10
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu')
    FLAGS.dtype = 'fp32'
    FLAGS.enable_eager = True
    self._run_and_report_benchmark()

  @benchmark_wrappers.enable_runtime_flags
  def _run_and_report_benchmark(self,
                                top_1_min=MODEL_OPTIMIZATION_TOP_1_ACCURACY[
                                    'RESNET50_FINETUNE_PRUNING'][0],
                                top_1_max=MODEL_OPTIMIZATION_TOP_1_ACCURACY[
                                    'RESNET50_FINETUNE_PRUNING'][1]):
    start_time_sec = time.time()
    stats = resnet_imagenet_main.run(flags.FLAGS)
    wall_time_sec = time.time() - start_time_sec

    super(KerasPruningAccuracyBase, self)._report_benchmark(
        stats,
        wall_time_sec,
        top_1_min=top_1_min,
        top_1_max=top_1_max,
        total_batch_size=FLAGS.batch_size,
        log_steps=100)


class MobilenetV1KerasPruningAccuracy(KerasPruningAccuracyBase):
  """Benchmark accuracy tests for MobilenetV1 with pruning method."""

  def __init__(self, root_data_dir=None, **kwargs):
    default_flags = {
        'model': 'mobilenet',
        'optimizer': 'mobilenet_default',
        'initial_learning_rate_per_sample': 0.00007,
        'pretrained_filepath': tf.train.latest_checkpoint(
            os.path.join(root_data_dir, 'mobilenet_v1')),
        'pruning_begin_step': 0,
        'pruning_end_step': 100000,
        'pruning_initial_sparsity': 0.0,
        'pruning_final_sparsity': 0.5,
        'pruning_frequency': 100,
    }
    super(MobilenetV1KerasPruningAccuracy, self).__init__(
        root_data_dir=root_data_dir,
        default_flags=default_flags,
        **kwargs)

  def _run_and_report_benchmark(self):
    super(MobilenetV1KerasPruningAccuracy, self)._run_and_report_benchmark(
        top_1_min=\
        MODEL_OPTIMIZATION_TOP_1_ACCURACY['MOBILENET_V1_FINETUNE_PRUNING'][0],
        top_1_max=\
        MODEL_OPTIMIZATION_TOP_1_ACCURACY['MOBILENET_V1_FINETUNE_PRUNING'][1])


class Resnet50KerasPruningAccuracy(KerasPruningAccuracyBase):
  """Benchmark accuracy tests for resnet50 with pruning method."""

  def __init__(self, root_data_dir=None, **kwargs):
    default_flags = {
        'model': 'resnet50_v1.5',
        'optimizer': 'mobilenet_default',
        'initial_learning_rate_per_sample': 0.0000039,
        'pretrained_filepath': tf.train.latest_checkpoint(
            os.path.join(root_data_dir, 'resnet50')),
        'pruning_begin_step': 0,
        'pruning_end_step': 50000,
        'pruning_initial_sparsity': 0.0,
        'pruning_final_sparsity': 0.5,
        'pruning_frequency': 100,
    }
    super(Resnet50KerasPruningAccuracy, self).__init__(
        root_data_dir=root_data_dir,
        default_flags=default_flags,
        **kwargs)

  def _run_and_report_benchmark(self):
    super(Resnet50KerasPruningAccuracy, self)._run_and_report_benchmark(
        top_1_min=\
        MODEL_OPTIMIZATION_TOP_1_ACCURACY['RESNET50_FINETUNE_PRUNING'][0],
        top_1_max=\
        MODEL_OPTIMIZATION_TOP_1_ACCURACY['RESNET50_FINETUNE_PRUNING'][1])


class KerasPruningBenchmarkRealBase(Resnet50KerasBenchmarkBase):
  """Pruning method benchmarks."""

  def __init__(self, root_data_dir=None, default_flags=None, **kwargs):
    if default_flags is None:
      default_flags = {}
    default_flags.update({
        'skip_eval': True,
        'report_accuracy_metrics': False,
        'data_dir': os.path.join(root_data_dir, 'imagenet'),
        'train_steps': 110,
        'log_steps': 10,
        'pruning_method': 'polynomial_decay',
        'pruning_begin_step': 0,
        'pruning_end_step': 50000,
        'pruning_initial_sparsity': 0,
        'pruning_final_sparsity': 0.5,
        'pruning_frequency': 100,
    })
    super(KerasPruningBenchmarkRealBase, self).__init__(
        default_flags=default_flags, **kwargs)


class MobilenetV1KerasPruningBenchmarkReal(KerasPruningBenchmarkRealBase):
  """Pruning method benchmarks for MobilenetV1."""

  def __init__(self, **kwargs):
    default_flags = {
        'model': 'mobilenet',
        'optimizer': 'mobilenet_default',
    }
    super(MobilenetV1KerasPruningBenchmarkReal, self).__init__(
        default_flags=default_flags, **kwargs)


class Resnet50KerasPruningBenchmarkReal(KerasPruningBenchmarkRealBase):
  """Pruning method benchmarks for resnet50."""

  def __init__(self, **kwargs):
    default_flags = {
        'model': 'resnet50_v1.5',
        'optimizer': 'mobilenet_default',
    }
    super(Resnet50KerasPruningBenchmarkReal, self).__init__(
        default_flags=default_flags, **kwargs)


1719
1720
if __name__ == '__main__':
  tf.test.main()