mnist.py 8.37 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
#  Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
#  Licensed under the Apache License, Version 2.0 (the "License");
#  you may not use this file except in compliance with the License.
#  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
#  Unless required by applicable law or agreed to in writing, software
#  distributed under the License is distributed on an "AS IS" BASIS,
#  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
#  See the License for the specific language governing permissions and
#  limitations under the License.
"""Convolutional Neural Network Estimator for MNIST, built with tf.layers."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import argparse
21
import sys
22

Karmel Allison's avatar
Karmel Allison committed
23
import tensorflow as tf  # pylint: disable=g-bad-import-order
24

25
from official.mnist import dataset
26
from official.utils.arg_parsers import parsers
27
from official.utils.logs import hooks_helper
28

29
LEARNING_RATE = 1e-4
30

Karmel Allison's avatar
Karmel Allison committed
31

32
def create_model(data_format):
Asim Shankar's avatar
Asim Shankar committed
33
  """Model to recognize digits in the MNIST dataset.
Asim Shankar's avatar
Asim Shankar committed
34
35
36
37
38
39

  Network structure is equivalent to:
  https://github.com/tensorflow/tensorflow/blob/r1.5/tensorflow/examples/tutorials/mnist/mnist_deep.py
  and
  https://github.com/tensorflow/models/blob/master/tutorials/image/mnist/convolutional.py

40
41
42
43
44
45
46
  But uses the tf.keras API.

  Args:
    data_format: Either 'channels_first' or 'channels_last'.
      'channels_first' is typically faster on GPUs while 'channels_last' is
      typically faster on CPUs. See
      https://www.tensorflow.org/performance/performance_guide#data_formats
Asim Shankar's avatar
Asim Shankar committed
47

48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
  Returns:
    A tf.keras.Model.
  """
  input_shape = None
  if data_format == 'channels_first':
    input_shape = [1, 28, 28]
  else:
    assert data_format == 'channels_last'
    input_shape = [28, 28, 1]

  L = tf.keras.layers
  max_pool = L.MaxPooling2D((2, 2), (2, 2), padding='same', data_format=data_format)
  return tf.keras.Sequential([
      L.Reshape(input_shape),
      L.Conv2D(32, 5, padding='same', data_format=data_format, activation=tf.nn.relu),
      max_pool,
      L.Conv2D(64, 5, padding='same', data_format=data_format, activation=tf.nn.relu),
      max_pool,
      L.Flatten(),
      L.Dense(1024, activation=tf.nn.relu),
      L.Dropout(0.4),
      L.Dense(10)])
Asim Shankar's avatar
Asim Shankar committed
70
71
72
73


def model_fn(features, labels, mode, params):
  """The model_fn argument for creating an Estimator."""
74
  model = create_model(params['data_format'])
75
76
77
78
  image = features
  if isinstance(image, dict):
    image = features['image']

Asim Shankar's avatar
Asim Shankar committed
79
  if mode == tf.estimator.ModeKeys.PREDICT:
80
81
82
83
84
85
86
87
88
89
90
    logits = model(image, training=False)
    predictions = {
        'classes': tf.argmax(logits, axis=1),
        'probabilities': tf.nn.softmax(logits),
    }
    return tf.estimator.EstimatorSpec(
        mode=tf.estimator.ModeKeys.PREDICT,
        predictions=predictions,
        export_outputs={
            'classify': tf.estimator.export.PredictOutput(predictions)
        })
Asim Shankar's avatar
Asim Shankar committed
91
  if mode == tf.estimator.ModeKeys.TRAIN:
92
    optimizer = tf.train.AdamOptimizer(learning_rate=LEARNING_RATE)
93
94
95
96
97

    # If we are running multi-GPU, we need to wrap the optimizer.
    if params.get('multi_gpu'):
      optimizer = tf.contrib.estimator.TowerOptimizer(optimizer)

98
    logits = model(image, training=True)
99
    loss = tf.losses.sparse_softmax_cross_entropy(labels=labels, logits=logits)
100
    accuracy = tf.metrics.accuracy(
101
        labels=labels, predictions=tf.argmax(logits, axis=1))
102
103
104
105

    # Name tensors to be logged with LoggingTensorHook.
    tf.identity(LEARNING_RATE, 'learning_rate')
    tf.identity(loss, 'cross_entropy')
106
    tf.identity(accuracy[1], name='train_accuracy')
107
108

    # Save accuracy scalar to Tensorboard output.
109
    tf.summary.scalar('train_accuracy', accuracy[1])
110

111
112
113
114
    return tf.estimator.EstimatorSpec(
        mode=tf.estimator.ModeKeys.TRAIN,
        loss=loss,
        train_op=optimizer.minimize(loss, tf.train.get_or_create_global_step()))
Asim Shankar's avatar
Asim Shankar committed
115
  if mode == tf.estimator.ModeKeys.EVAL:
116
    logits = model(image, training=False)
117
    loss = tf.losses.sparse_softmax_cross_entropy(labels=labels, logits=logits)
118
119
120
121
122
123
    return tf.estimator.EstimatorSpec(
        mode=tf.estimator.ModeKeys.EVAL,
        loss=loss,
        eval_metric_ops={
            'accuracy':
                tf.metrics.accuracy(
Mark Daoust's avatar
Mark Daoust committed
124
                    labels=labels,
125
126
                    predictions=tf.argmax(logits, axis=1)),
        })
127
128


129
def validate_batch_size_for_multi_gpu(batch_size):
Karmel Allison's avatar
Karmel Allison committed
130
  """For multi-gpu, batch-size must be a multiple of the number of GPUs.
131
132
133
134

  Note that this should eventually be handled by replicate_model_fn
  directly. Multi-GPU support is currently experimental, however,
  so doing the work here until that feature is in place.
Karmel Allison's avatar
Karmel Allison committed
135
136
137
138
139
140

  Args:
    batch_size: the number of examples processed in each training batch.

  Raises:
    ValueError: if no GPUs are found, or selected batch_size is invalid.
141
  """
Karmel Allison's avatar
Karmel Allison committed
142
  from tensorflow.python.client import device_lib  # pylint: disable=g-import-not-at-top
143
144
145
146
147

  local_device_protos = device_lib.list_local_devices()
  num_gpus = sum([1 for d in local_device_protos if d.device_type == 'GPU'])
  if not num_gpus:
    raise ValueError('Multi-GPU mode was specified, but no GPUs '
Karmel Allison's avatar
Karmel Allison committed
148
                     'were found. To use CPU, run without --multi_gpu.')
149

150
151
152
  remainder = batch_size % num_gpus
  if remainder:
    err = ('When running with multiple GPUs, batch size '
Karmel Allison's avatar
Karmel Allison committed
153
154
155
           'must be a multiple of the number of available GPUs. '
           'Found {} GPUs with a batch size of {}; try --batch_size={} instead.'
          ).format(num_gpus, batch_size, batch_size - remainder)
156
157
158
    raise ValueError(err)


159
160
161
162
def main(argv):
  parser = MNISTArgParser()
  flags = parser.parse_args(args=argv[1:])

163
164
  model_function = model_fn

165
166
  if flags.multi_gpu:
    validate_batch_size_for_multi_gpu(flags.batch_size)
167
168
169
170
171
172
173

    # There are two steps required if using multi-GPU: (1) wrap the model_fn,
    # and (2) wrap the optimizer. The first happens here, and (2) happens
    # in the model_fn itself when the optimizer is defined.
    model_function = tf.contrib.estimator.replicate_model_fn(
        model_fn, loss_reduction=tf.losses.Reduction.MEAN)

174
  data_format = flags.data_format
Asim Shankar's avatar
Asim Shankar committed
175
176
177
  if data_format is None:
    data_format = ('channels_first'
                   if tf.test.is_built_with_cuda() else 'channels_last')
178
  mnist_classifier = tf.estimator.Estimator(
179
      model_fn=model_function,
180
      model_dir=flags.model_dir,
Asim Shankar's avatar
Asim Shankar committed
181
      params={
182
          'data_format': data_format,
183
          'multi_gpu': flags.multi_gpu
Asim Shankar's avatar
Asim Shankar committed
184
      })
185

186
  # Set up training and evaluation input functions.
Asim Shankar's avatar
Asim Shankar committed
187
  def train_input_fn():
Karmel Allison's avatar
Karmel Allison committed
188
189
    """Prepare data for training."""

Asim Shankar's avatar
Asim Shankar committed
190
191
192
    # When choosing shuffle buffer sizes, larger sizes result in better
    # randomness, while smaller sizes use less memory. MNIST is a small
    # enough dataset that we can easily shuffle the full epoch.
193
194
    ds = dataset.train(flags.data_dir)
    ds = ds.cache().shuffle(buffer_size=50000).batch(flags.batch_size)
Asim Shankar's avatar
Asim Shankar committed
195

196
197
    # Iterate through the dataset a set number (`epochs_between_evals`) of times
    # during each training session.
198
    ds = ds.repeat(flags.epochs_between_evals)
199
    return ds
200

Asim Shankar's avatar
Asim Shankar committed
201
  def eval_input_fn():
202
203
    return dataset.test(flags.data_dir).batch(
        flags.batch_size).make_one_shot_iterator().get_next()
Asim Shankar's avatar
Asim Shankar committed
204

205
206
  # Set up hook that outputs training logs every 100 steps.
  train_hooks = hooks_helper.get_train_hooks(
207
      flags.hooks, batch_size=flags.batch_size)
208
209

  # Train and evaluate model.
210
  for _ in range(flags.train_epochs // flags.epochs_between_evals):
211
212
213
    mnist_classifier.train(input_fn=train_input_fn, hooks=train_hooks)
    eval_results = mnist_classifier.evaluate(input_fn=eval_input_fn)
    print('\nEvaluation results:\n\t%s\n' % eval_results)
214

215
  # Export the model
216
  if flags.export_dir is not None:
Asim Shankar's avatar
Asim Shankar committed
217
218
    image = tf.placeholder(tf.float32, [None, 28, 28])
    input_fn = tf.estimator.export.build_raw_serving_input_receiver_fn({
219
        'image': image,
Asim Shankar's avatar
Asim Shankar committed
220
    })
221
    mnist_classifier.export_savedmodel(flags.export_dir, input_fn)
222

223

224
class MNISTArgParser(argparse.ArgumentParser):
225
  """Argument parser for running MNIST model."""
Karmel Allison's avatar
Karmel Allison committed
226

227
  def __init__(self):
228
    super(MNISTArgParser, self).__init__(parents=[
Karmel Allison's avatar
Karmel Allison committed
229
        parsers.BaseParser(),
230
231
232
        parsers.ImageModelParser(),
        parsers.ExportParser(),
    ])
233
234
235
236
237
238

    self.set_defaults(
        data_dir='/tmp/mnist_data',
        model_dir='/tmp/mnist_model',
        batch_size=100,
        train_epochs=40)
239
240
241


if __name__ == '__main__':
242
  tf.logging.set_verbosity(tf.logging.INFO)
243
  main(argv=sys.argv)