keras_cifar_benchmark.py 8.37 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
Toby Boyd's avatar
Toby Boyd committed
15
"""Executes Keras benchmarks and accuracy tests."""
Shining Sun's avatar
Shining Sun committed
16
17
18

from __future__ import absolute_import
from __future__ import division
Toby Boyd's avatar
Toby Boyd committed
19
20
from __future__ import print_function

21
import os
22
import time
Toby Boyd's avatar
Toby Boyd committed
23
from absl import flags
24
import tensorflow as tf  # pylint: disable=g-bad-import-order
Toby Boyd's avatar
Toby Boyd committed
25
26

from official.resnet import cifar10_main as cifar_main
Toby Boyd's avatar
Toby Boyd committed
27
from official.resnet.keras import keras_benchmark
28
29
30
from official.resnet.keras import keras_cifar_main
from official.resnet.keras import keras_common

31
32
MIN_TOP_1_ACCURACY = 0.925
MAX_TOP_1_ACCURACY = 0.938
Toby Boyd's avatar
Toby Boyd committed
33

Toby Boyd's avatar
Toby Boyd committed
34
FLAGS = flags.FLAGS
35
CIFAR_DATA_DIR_NAME = 'cifar-10-batches-bin'
Toby Boyd's avatar
Toby Boyd committed
36

37

Toby Boyd's avatar
Toby Boyd committed
38
39
class Resnet56KerasAccuracy(keras_benchmark.KerasBenchmark):
  """Accuracy tests for ResNet56 Keras CIFAR-10."""
40

41
  def __init__(self, output_dir=None, root_data_dir=None, **kwargs):
42
43
44
45
46
    """A benchmark class.

    Args:
      output_dir: directory where to output e.g. log files
      root_data_dir: directory under which to look for dataset
47
48
49
      **kwargs: arbitrary named arguments. This is needed to make the
                constructor forward compatible in case PerfZero provides more
                named arguments before updating the constructor.
50
51
    """

52
    self.data_dir = os.path.join(root_data_dir, CIFAR_DATA_DIR_NAME)
53
54
55
    flag_methods = [
        keras_common.define_keras_flags, cifar_main.define_cifar_flags
    ]
Toby Boyd's avatar
Toby Boyd committed
56

57
58
    super(Resnet56KerasAccuracy, self).__init__(
        output_dir=output_dir, flag_methods=flag_methods)
Toby Boyd's avatar
Toby Boyd committed
59

Toby Boyd's avatar
Toby Boyd committed
60
  def benchmark_graph_1_gpu(self):
61
    """Test keras based model with Keras fit and distribution strategies."""
Toby Boyd's avatar
Toby Boyd committed
62
    self._setup()
Toby Boyd's avatar
Toby Boyd committed
63
    FLAGS.num_gpus = 1
64
    FLAGS.data_dir = self.data_dir
Toby Boyd's avatar
Toby Boyd committed
65
66
    FLAGS.batch_size = 128
    FLAGS.train_epochs = 182
67
    FLAGS.model_dir = self._get_model_dir('benchmark_graph_1_gpu')
Toby Boyd's avatar
Toby Boyd committed
68
    FLAGS.dtype = 'fp32'
69
    self._run_and_report_benchmark()
Toby Boyd's avatar
Toby Boyd committed
70
71

  def benchmark_1_gpu(self):
72
73
    """Test keras based model with eager and distribution strategies."""
    self._setup()
Toby Boyd's avatar
Toby Boyd committed
74
    FLAGS.num_gpus = 1
75
    FLAGS.data_dir = self.data_dir
Toby Boyd's avatar
Toby Boyd committed
76
77
    FLAGS.batch_size = 128
    FLAGS.train_epochs = 182
78
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu')
Toby Boyd's avatar
Toby Boyd committed
79
80
    FLAGS.dtype = 'fp32'
    FLAGS.enable_eager = True
81
    self._run_and_report_benchmark()
82

83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
  def benchmark_1_gpu_no_dist_strat_run_eagerly(self):
    """Test keras based model with forced eager."""
    self._setup()
    FLAGS.num_gpus = 1
    FLAGS.data_dir = self.data_dir
    FLAGS.batch_size = 128
    FLAGS.train_epochs = 182
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_1_gpu_no_dist_strat_run_eagerly')
    FLAGS.dtype = 'fp32'
    FLAGS.enable_eager = True
    FLAGS.run_eagerly = True
    FLAGS.distribution_strategy = 'off'
    self._run_and_report_benchmark()

Toby Boyd's avatar
Toby Boyd committed
98
  def benchmark_2_gpu(self):
99
100
    """Test keras based model with eager and distribution strategies."""
    self._setup()
Toby Boyd's avatar
Toby Boyd committed
101
    FLAGS.num_gpus = 2
102
    FLAGS.data_dir = self.data_dir
Toby Boyd's avatar
Toby Boyd committed
103
104
    FLAGS.batch_size = 128
    FLAGS.train_epochs = 182
105
    FLAGS.model_dir = self._get_model_dir('benchmark_2_gpu')
Toby Boyd's avatar
Toby Boyd committed
106
107
    FLAGS.dtype = 'fp32'
    FLAGS.enable_eager = True
108
    self._run_and_report_benchmark()
Toby Boyd's avatar
Toby Boyd committed
109
110

  def benchmark_graph_2_gpu(self):
111
112
    """Test keras based model with Keras fit and distribution strategies."""
    self._setup()
Toby Boyd's avatar
Toby Boyd committed
113
    FLAGS.num_gpus = 2
114
    FLAGS.data_dir = self.data_dir
Toby Boyd's avatar
Toby Boyd committed
115
116
    FLAGS.batch_size = 128
    FLAGS.train_epochs = 182
117
    FLAGS.model_dir = self._get_model_dir('benchmark_graph_2_gpu')
Toby Boyd's avatar
Toby Boyd committed
118
    FLAGS.dtype = 'fp32'
119
    self._run_and_report_benchmark()
Toby Boyd's avatar
Toby Boyd committed
120
121

  def benchmark_graph_1_gpu_no_dist_strat(self):
122
    """Test keras based model with Keras fit but not distribution strategies."""
Toby Boyd's avatar
Toby Boyd committed
123
    self._setup()
124
    FLAGS.distribution_strategy = 'off'
Toby Boyd's avatar
Toby Boyd committed
125
    FLAGS.num_gpus = 1
126
    FLAGS.data_dir = self.data_dir
Toby Boyd's avatar
Toby Boyd committed
127
128
    FLAGS.batch_size = 128
    FLAGS.train_epochs = 182
129
    FLAGS.model_dir = self._get_model_dir('benchmark_graph_1_gpu_no_dist_strat')
Toby Boyd's avatar
Toby Boyd committed
130
    FLAGS.dtype = 'fp32'
131
132
133
134
    self._run_and_report_benchmark()

  def _run_and_report_benchmark(self):
    start_time_sec = time.time()
Toby Boyd's avatar
Toby Boyd committed
135
    stats = keras_cifar_main.run(FLAGS)
136
    wall_time_sec = time.time() - start_time_sec
Toby Boyd's avatar
Toby Boyd committed
137

138
    super(Resnet56KerasAccuracy, self)._report_benchmark(
Toby Boyd's avatar
Toby Boyd committed
139
        stats,
140
        wall_time_sec,
Toby Boyd's avatar
Toby Boyd committed
141
142
        top_1_min=MIN_TOP_1_ACCURACY,
        top_1_max=MAX_TOP_1_ACCURACY,
143
        total_batch_size=FLAGS.batch_size,
Toby Boyd's avatar
Toby Boyd committed
144
145
146
147
148
149
150
        log_steps=100)


class Resnet56KerasBenchmarkBase(keras_benchmark.KerasBenchmark):
  """Short performance tests for ResNet56 via Keras and CIFAR-10."""

  def __init__(self, output_dir=None, default_flags=None):
151
152
153
    flag_methods = [
        keras_common.define_keras_flags, cifar_main.define_cifar_flags
    ]
Toby Boyd's avatar
Toby Boyd committed
154
155
156
157
158
159

    super(Resnet56KerasBenchmarkBase, self).__init__(
        output_dir=output_dir,
        flag_methods=flag_methods,
        default_flags=default_flags)

160
161
  def _run_and_report_benchmark(self):
    start_time_sec = time.time()
Toby Boyd's avatar
Toby Boyd committed
162
    stats = keras_cifar_main.run(FLAGS)
163
164
165
166
167
168
169
    wall_time_sec = time.time() - start_time_sec

    super(Resnet56KerasBenchmarkBase, self)._report_benchmark(
        stats,
        wall_time_sec,
        total_batch_size=FLAGS.batch_size,
        log_steps=FLAGS.log_steps)
Toby Boyd's avatar
Toby Boyd committed
170
171
172
173
174

  def benchmark_1_gpu_no_dist_strat(self):
    self._setup()
    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
175
    FLAGS.distribution_strategy = 'off'
176
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_no_dist_strat')
Toby Boyd's avatar
Toby Boyd committed
177
    FLAGS.batch_size = 128
178
    self._run_and_report_benchmark()
Toby Boyd's avatar
Toby Boyd committed
179
180
181
182
183

  def benchmark_graph_1_gpu_no_dist_strat(self):
    self._setup()
    FLAGS.num_gpus = 1
    FLAGS.enable_eager = False
184
    FLAGS.distribution_strategy = 'off'
185
    FLAGS.model_dir = self._get_model_dir('benchmark_graph_1_gpu_no_dist_strat')
Toby Boyd's avatar
Toby Boyd committed
186
    FLAGS.batch_size = 128
187
    self._run_and_report_benchmark()
Toby Boyd's avatar
Toby Boyd committed
188
189
190
191
192

  def benchmark_1_gpu(self):
    self._setup()
    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
193
    FLAGS.distribution_strategy = 'default'
194
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu')
Toby Boyd's avatar
Toby Boyd committed
195
    FLAGS.batch_size = 128
196
    self._run_and_report_benchmark()
Toby Boyd's avatar
Toby Boyd committed
197
198
199
200
201

  def benchmark_graph_1_gpu(self):
    self._setup()
    FLAGS.num_gpus = 1
    FLAGS.enable_eager = False
202
    FLAGS.distribution_strategy = 'default'
203
    FLAGS.model_dir = self._get_model_dir('benchmark_graph_1_gpu')
Toby Boyd's avatar
Toby Boyd committed
204
    FLAGS.batch_size = 128
205
    self._run_and_report_benchmark()
Toby Boyd's avatar
Toby Boyd committed
206
207
208
209
210

  def benchmark_2_gpu(self):
    self._setup()
    FLAGS.num_gpus = 2
    FLAGS.enable_eager = True
211
    FLAGS.distribution_strategy = 'default'
212
    FLAGS.model_dir = self._get_model_dir('benchmark_2_gpu')
Toby Boyd's avatar
Toby Boyd committed
213
    FLAGS.batch_size = 128 * 2  # 2 GPUs
214
    self._run_and_report_benchmark()
Toby Boyd's avatar
Toby Boyd committed
215
216
217
218
219

  def benchmark_graph_2_gpu(self):
    self._setup()
    FLAGS.num_gpus = 2
    FLAGS.enable_eager = False
220
    FLAGS.distribution_strategy = 'default'
221
    FLAGS.model_dir = self._get_model_dir('benchmark_graph_2_gpu')
Toby Boyd's avatar
Toby Boyd committed
222
    FLAGS.batch_size = 128 * 2  # 2 GPUs
223
    self._run_and_report_benchmark()
Toby Boyd's avatar
Toby Boyd committed
224
225
226
227
228


class Resnet56KerasBenchmarkSynth(Resnet56KerasBenchmarkBase):
  """Synthetic benchmarks for ResNet56 and Keras."""

229
  def __init__(self, output_dir=None, root_data_dir=None, **kwargs):
230
231
232
233
234
    default_flags = {}
    default_flags['skip_eval'] = True
    default_flags['use_synthetic_data'] = True
    default_flags['train_steps'] = 110
    default_flags['log_steps'] = 10
Toby Boyd's avatar
Toby Boyd committed
235

236
    super(Resnet56KerasBenchmarkSynth, self).__init__(
237
        output_dir=output_dir, default_flags=default_flags)
Toby Boyd's avatar
Toby Boyd committed
238
239
240
241
242


class Resnet56KerasBenchmarkReal(Resnet56KerasBenchmarkBase):
  """Real data benchmarks for ResNet56 and Keras."""

243
  def __init__(self, output_dir=None, root_data_dir=None, **kwargs):
244
245
246
247
248
    default_flags = {}
    default_flags['skip_eval'] = True
    default_flags['data_dir'] = os.path.join(root_data_dir, CIFAR_DATA_DIR_NAME)
    default_flags['train_steps'] = 110
    default_flags['log_steps'] = 10
Toby Boyd's avatar
Toby Boyd committed
249

250
    super(Resnet56KerasBenchmarkReal, self).__init__(
251
        output_dir=output_dir, default_flags=default_flags)
252
253
254
255


if __name__ == '__main__':
  tf.test.main()