keras_cifar_benchmark.py 7.42 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
Toby Boyd's avatar
Toby Boyd committed
15
"""Executes Keras benchmarks and accuracy tests."""
Shining Sun's avatar
Shining Sun committed
16
17
18

from __future__ import absolute_import
from __future__ import division
Toby Boyd's avatar
Toby Boyd committed
19
20
from __future__ import print_function

21
import os
22
import time
Toby Boyd's avatar
Toby Boyd committed
23
24
25
from absl import flags

from official.resnet import cifar10_main as cifar_main
Toby Boyd's avatar
Toby Boyd committed
26
from official.resnet.keras import keras_benchmark
27
28
29
from official.resnet.keras import keras_cifar_main
from official.resnet.keras import keras_common

30
31
MIN_TOP_1_ACCURACY = 0.925
MAX_TOP_1_ACCURACY = 0.938
Toby Boyd's avatar
Toby Boyd committed
32

Toby Boyd's avatar
Toby Boyd committed
33
FLAGS = flags.FLAGS
Toby Boyd's avatar
Toby Boyd committed
34

35

Toby Boyd's avatar
Toby Boyd committed
36
37
class Resnet56KerasAccuracy(keras_benchmark.KerasBenchmark):
  """Accuracy tests for ResNet56 Keras CIFAR-10."""
38

39
40
41
42
43
44
45
46
47
  def __init__(self, output_dir=None, root_data_dir=None):
    """A benchmark class.

    Args:
      output_dir: directory where to output e.g. log files
      root_data_dir: directory under which to look for dataset
    """

    self.data_dir = os.path.join(root_data_dir, 'cifar-10-batches-bin')
48
49
50
    flag_methods = [
        keras_common.define_keras_flags, cifar_main.define_cifar_flags
    ]
Toby Boyd's avatar
Toby Boyd committed
51

52
53
    super(Resnet56KerasAccuracy, self).__init__(
        output_dir=output_dir, flag_methods=flag_methods)
Toby Boyd's avatar
Toby Boyd committed
54

Toby Boyd's avatar
Toby Boyd committed
55
  def benchmark_graph_1_gpu(self):
56
    """Test keras based model with Keras fit and distribution strategies."""
Toby Boyd's avatar
Toby Boyd committed
57
    self._setup()
Toby Boyd's avatar
Toby Boyd committed
58
    FLAGS.num_gpus = 1
59
    FLAGS.data_dir = self.data_dir
Toby Boyd's avatar
Toby Boyd committed
60
61
    FLAGS.batch_size = 128
    FLAGS.train_epochs = 182
62
    FLAGS.model_dir = self._get_model_dir('benchmark_graph_1_gpu')
Toby Boyd's avatar
Toby Boyd committed
63
    FLAGS.dtype = 'fp32'
64
    self._run_and_report_benchmark()
Toby Boyd's avatar
Toby Boyd committed
65
66

  def benchmark_1_gpu(self):
67
68
    """Test keras based model with eager and distribution strategies."""
    self._setup()
Toby Boyd's avatar
Toby Boyd committed
69
    FLAGS.num_gpus = 1
70
    FLAGS.data_dir = self.data_dir
Toby Boyd's avatar
Toby Boyd committed
71
72
    FLAGS.batch_size = 128
    FLAGS.train_epochs = 182
73
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu')
Toby Boyd's avatar
Toby Boyd committed
74
75
    FLAGS.dtype = 'fp32'
    FLAGS.enable_eager = True
76
    self._run_and_report_benchmark()
77

Toby Boyd's avatar
Toby Boyd committed
78
  def benchmark_2_gpu(self):
79
80
    """Test keras based model with eager and distribution strategies."""
    self._setup()
Toby Boyd's avatar
Toby Boyd committed
81
    FLAGS.num_gpus = 2
82
    FLAGS.data_dir = self.data_dir
Toby Boyd's avatar
Toby Boyd committed
83
84
    FLAGS.batch_size = 128
    FLAGS.train_epochs = 182
85
    FLAGS.model_dir = self._get_model_dir('benchmark_2_gpu')
Toby Boyd's avatar
Toby Boyd committed
86
87
    FLAGS.dtype = 'fp32'
    FLAGS.enable_eager = True
88
    self._run_and_report_benchmark()
Toby Boyd's avatar
Toby Boyd committed
89
90

  def benchmark_graph_2_gpu(self):
91
92
    """Test keras based model with Keras fit and distribution strategies."""
    self._setup()
Toby Boyd's avatar
Toby Boyd committed
93
    FLAGS.num_gpus = 2
94
    FLAGS.data_dir = self.data_dir
Toby Boyd's avatar
Toby Boyd committed
95
96
    FLAGS.batch_size = 128
    FLAGS.train_epochs = 182
97
    FLAGS.model_dir = self._get_model_dir('benchmark_graph_2_gpu')
Toby Boyd's avatar
Toby Boyd committed
98
    FLAGS.dtype = 'fp32'
99
    self._run_and_report_benchmark()
Toby Boyd's avatar
Toby Boyd committed
100
101

  def benchmark_graph_1_gpu_no_dist_strat(self):
102
    """Test keras based model with Keras fit but not distribution strategies."""
Toby Boyd's avatar
Toby Boyd committed
103
    self._setup()
104
    FLAGS.distribution_strategy = 'off'
Toby Boyd's avatar
Toby Boyd committed
105
    FLAGS.num_gpus = 1
106
    FLAGS.data_dir = self.data_dir
Toby Boyd's avatar
Toby Boyd committed
107
108
    FLAGS.batch_size = 128
    FLAGS.train_epochs = 182
109
    FLAGS.model_dir = self._get_model_dir('benchmark_graph_1_gpu_no_dist_strat')
Toby Boyd's avatar
Toby Boyd committed
110
    FLAGS.dtype = 'fp32'
111
112
113
114
    self._run_and_report_benchmark()

  def _run_and_report_benchmark(self):
    start_time_sec = time.time()
Toby Boyd's avatar
Toby Boyd committed
115
    stats = keras_cifar_main.run(FLAGS)
116
    wall_time_sec = time.time() - start_time_sec
Toby Boyd's avatar
Toby Boyd committed
117

118
    super(Resnet56KerasAccuracy, self)._report_benchmark(
Toby Boyd's avatar
Toby Boyd committed
119
        stats,
120
        wall_time_sec,
Toby Boyd's avatar
Toby Boyd committed
121
122
        top_1_min=MIN_TOP_1_ACCURACY,
        top_1_max=MAX_TOP_1_ACCURACY,
123
        total_batch_size=FLAGS.batch_size,
Toby Boyd's avatar
Toby Boyd committed
124
125
126
127
128
129
130
        log_steps=100)


class Resnet56KerasBenchmarkBase(keras_benchmark.KerasBenchmark):
  """Short performance tests for ResNet56 via Keras and CIFAR-10."""

  def __init__(self, output_dir=None, default_flags=None):
131
132
133
    flag_methods = [
        keras_common.define_keras_flags, cifar_main.define_cifar_flags
    ]
Toby Boyd's avatar
Toby Boyd committed
134
135
136
137
138
139

    super(Resnet56KerasBenchmarkBase, self).__init__(
        output_dir=output_dir,
        flag_methods=flag_methods,
        default_flags=default_flags)

140
141
  def _run_and_report_benchmark(self):
    start_time_sec = time.time()
Toby Boyd's avatar
Toby Boyd committed
142
    stats = keras_cifar_main.run(FLAGS)
143
144
145
146
147
148
149
    wall_time_sec = time.time() - start_time_sec

    super(Resnet56KerasBenchmarkBase, self)._report_benchmark(
        stats,
        wall_time_sec,
        total_batch_size=FLAGS.batch_size,
        log_steps=FLAGS.log_steps)
Toby Boyd's avatar
Toby Boyd committed
150
151
152
153
154

  def benchmark_1_gpu_no_dist_strat(self):
    self._setup()
    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
155
    FLAGS.distribution_strategy = 'off'
156
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_no_dist_strat')
Toby Boyd's avatar
Toby Boyd committed
157
    FLAGS.batch_size = 128
158
    self._run_and_report_benchmark()
Toby Boyd's avatar
Toby Boyd committed
159
160
161
162
163

  def benchmark_graph_1_gpu_no_dist_strat(self):
    self._setup()
    FLAGS.num_gpus = 1
    FLAGS.enable_eager = False
164
    FLAGS.distribution_strategy = 'off'
165
    FLAGS.model_dir = self._get_model_dir('benchmark_graph_1_gpu_no_dist_strat')
Toby Boyd's avatar
Toby Boyd committed
166
    FLAGS.batch_size = 128
167
    self._run_and_report_benchmark()
Toby Boyd's avatar
Toby Boyd committed
168
169
170
171
172

  def benchmark_1_gpu(self):
    self._setup()
    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
173
    FLAGS.distribution_strategy = 'default'
174
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu')
Toby Boyd's avatar
Toby Boyd committed
175
    FLAGS.batch_size = 128
176
    self._run_and_report_benchmark()
Toby Boyd's avatar
Toby Boyd committed
177
178
179
180
181

  def benchmark_graph_1_gpu(self):
    self._setup()
    FLAGS.num_gpus = 1
    FLAGS.enable_eager = False
182
    FLAGS.distribution_strategy = 'default'
183
    FLAGS.model_dir = self._get_model_dir('benchmark_graph_1_gpu')
Toby Boyd's avatar
Toby Boyd committed
184
    FLAGS.batch_size = 128
185
    self._run_and_report_benchmark()
Toby Boyd's avatar
Toby Boyd committed
186
187
188
189
190

  def benchmark_2_gpu(self):
    self._setup()
    FLAGS.num_gpus = 2
    FLAGS.enable_eager = True
191
    FLAGS.distribution_strategy = 'default'
192
    FLAGS.model_dir = self._get_model_dir('benchmark_2_gpu')
Toby Boyd's avatar
Toby Boyd committed
193
    FLAGS.batch_size = 128 * 2  # 2 GPUs
194
    self._run_and_report_benchmark()
Toby Boyd's avatar
Toby Boyd committed
195
196
197
198
199

  def benchmark_graph_2_gpu(self):
    self._setup()
    FLAGS.num_gpus = 2
    FLAGS.enable_eager = False
200
    FLAGS.distribution_strategy = 'default'
201
    FLAGS.model_dir = self._get_model_dir('benchmark_graph_2_gpu')
Toby Boyd's avatar
Toby Boyd committed
202
    FLAGS.batch_size = 128 * 2  # 2 GPUs
203
    self._run_and_report_benchmark()
Toby Boyd's avatar
Toby Boyd committed
204
205
206
207
208


class Resnet56KerasBenchmarkSynth(Resnet56KerasBenchmarkBase):
  """Synthetic benchmarks for ResNet56 and Keras."""

209
  def __init__(self, output_dir=None, root_data_dir=None):
Toby Boyd's avatar
Toby Boyd committed
210
211
212
213
214
215
    def_flags = {}
    def_flags['skip_eval'] = True
    def_flags['use_synthetic_data'] = True
    def_flags['train_steps'] = 110
    def_flags['log_steps'] = 10

216
217
    super(Resnet56KerasBenchmarkSynth, self).__init__(
        output_dir=output_dir, default_flags=def_flags)
Toby Boyd's avatar
Toby Boyd committed
218
219
220
221
222


class Resnet56KerasBenchmarkReal(Resnet56KerasBenchmarkBase):
  """Real data benchmarks for ResNet56 and Keras."""

223
  def __init__(self, output_dir=None, root_data_dir=None):
Toby Boyd's avatar
Toby Boyd committed
224
225
    def_flags = {}
    def_flags['skip_eval'] = True
226
    def_flags['data_dir'] = self.data_dir
Toby Boyd's avatar
Toby Boyd committed
227
228
229
    def_flags['train_steps'] = 110
    def_flags['log_steps'] = 10

230
231
    super(Resnet56KerasBenchmarkReal, self).__init__(
        output_dir=output_dir, default_flags=def_flags)