Commit 834cff94 authored by Toby Boyd's avatar Toby Boyd
Browse files

Initial benchmark script idea.

parent 59788849
"""Executes Keras benchmarks and accuracy tests."""
from __future__ import print_function
import os
import sys
from absl import app as absl_app
from absl import flags
import tensorflow as tf # pylint: disable=g-bad-import-order
from official.resnet import cifar10_main as cifar_main
import official.resnet.keras.keras_cifar_main as keras_cifar_main
DATA_DIR = '/data/cifar10_data/'
class KerasCifar10BenchmarkTests():
def keras_resnet56_1_gpu(self):
self._setup()
flags.FLAGS.num_gpus = 1
flags.FLAGS.data_dir = DATA_DIR
flags.FLAGS.batch_size = 128
flags.FLAGS.train_epochs = 1
flags.FLAGS.model_dir = self._get_model_dir('keras_resnet56_1_gpu')
flags.FLAGS.resnet_size = 56
flags.FLAGS.dtype = 'fp32'
stats = keras_cifar_main.run_cifar_with_keras(flags.FLAGS)
report_info = {}
results = []
results.append(self._create_result(stats['accuracy_top_1'].item(),
'top_1',
'quality'))
results.append(self._create_result(stats['training_accuracy_top_1'].item(),
'top_1_train_accuracy',
'quality'))
report_info['results'] = results
return report_info
def keras_resnet56_4_gpu(self):
flags.FLAGS.num_gpus = 4
flags.FLAGS.data_dir = DATA_DIR
flags.FLAGS.batch_size = 128
flags.FLAGS.train_epochs = 182
flags.FLAGS.model_dir = ''
flags.FLAGS.resnet_size = 56
flags.FLAGS.dtype = 'fp32'
keras_cifar_main.run_cifar_with_keras(flags.FLAGS)
def keras_resnet56_no_dist_strat_1_gpu(self):
self._setup()
flags.dist_strat_off = True
flags.FLAGS.num_gpus = 1
flags.FLAGS.data_dir = DATA_DIR
flags.FLAGS.batch_size = 128
flags.FLAGS.train_epochs = 1
flags.FLAGS.model_dir = ''
flags.FLAGS.resnet_size = 56
flags.FLAGS.dtype = 'fp32'
stats = keras_cifar_main.run_cifar_with_keras(flags.FLAGS)
report_info = {}
results = []
results.append(self._create_result(stats['accuracy_top_1'].item(),
'top_1',
'quality'))
results.append(self._create_result(stats['training_accuracy_top_1'].item(),
'top_1_train_accuracy',
'quality'))
report_info['results'] = results
return report_info
def _create_result(self, result, result_name, result_unit):
res_dict = {}
res_dict['result'] = result
res_dict['result_name'] = result_name
res_dict['result_unit'] = result_unit
return res_dict
def _get_model_dir(self, folder_name):
return os.path.join('/workspace', folder_name)
def _setup(self):
tf.logging.set_verbosity(tf.logging.DEBUG)
keras_cifar_main.define_keras_cifar_flags()
cifar_main.define_cifar_flags()
flags.FLAGS(['foo'])
def run_tests(self, test_list):
keras_benchmark = KerasCifar10BenchmarkTests()
if test_list:
for t in test_list:
getattr(self, t)()
else:
print('Running all tests')
keras_benchmark.keras_resnet56_1_gpu()
keras_benchmark.keras_resnet56_no_dist_strat_1_gpu()
keras_benchmark.keras_resnet56_4_gpu()
def main(_):
keras_benchmark = KerasCifar10BenchmarkTests()
keras_benchmark.run_tests(['keras_resnet56_1_gpu'])
if __name__ == '__main__':
tf.logging.set_verbosity(tf.logging.DEBUG)
cifar_main.define_cifar_flags()
absl_app.run(main)
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment