keras_cifar_benchmark.py 7.83 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2018 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
Toby Boyd's avatar
Toby Boyd committed
15
"""Executes Keras benchmarks and accuracy tests."""
Shining Sun's avatar
Shining Sun committed
16
17
18

from __future__ import absolute_import
from __future__ import division
Toby Boyd's avatar
Toby Boyd committed
19
20
from __future__ import print_function

21
import os
22
import time
Toby Boyd's avatar
Toby Boyd committed
23
24
25
from absl import flags

from official.resnet import cifar10_main as cifar_main
Toby Boyd's avatar
Toby Boyd committed
26
from official.resnet.keras import keras_benchmark
27
28
29
from official.resnet.keras import keras_cifar_main
from official.resnet.keras import keras_common

30
31
MIN_TOP_1_ACCURACY = 0.925
MAX_TOP_1_ACCURACY = 0.938
Toby Boyd's avatar
Toby Boyd committed
32

Toby Boyd's avatar
Toby Boyd committed
33
FLAGS = flags.FLAGS
34
CIFAR_DATA_DIR_NAME = 'cifar-10-batches-bin'
Toby Boyd's avatar
Toby Boyd committed
35

36

Toby Boyd's avatar
Toby Boyd committed
37
38
class Resnet56KerasAccuracy(keras_benchmark.KerasBenchmark):
  """Accuracy tests for ResNet56 Keras CIFAR-10."""
39

40
  def __init__(self, output_dir=None, root_data_dir=None, **kwargs):
41
42
43
44
45
    """A benchmark class.

    Args:
      output_dir: directory where to output e.g. log files
      root_data_dir: directory under which to look for dataset
46
47
48
      **kwargs: arbitrary named arguments. This is needed to make the
                constructor forward compatible in case PerfZero provides more
                named arguments before updating the constructor.
49
50
    """

51
    self.data_dir = os.path.join(root_data_dir, CIFAR_DATA_DIR_NAME)
52
53
54
    flag_methods = [
        keras_common.define_keras_flags, cifar_main.define_cifar_flags
    ]
Toby Boyd's avatar
Toby Boyd committed
55

56
57
    super(Resnet56KerasAccuracy, self).__init__(
        output_dir=output_dir, flag_methods=flag_methods)
Toby Boyd's avatar
Toby Boyd committed
58

Toby Boyd's avatar
Toby Boyd committed
59
  def benchmark_graph_1_gpu(self):
60
    """Test keras based model with Keras fit and distribution strategies."""
Toby Boyd's avatar
Toby Boyd committed
61
    self._setup()
Toby Boyd's avatar
Toby Boyd committed
62
    FLAGS.num_gpus = 1
63
    FLAGS.data_dir = self.data_dir
Toby Boyd's avatar
Toby Boyd committed
64
65
    FLAGS.batch_size = 128
    FLAGS.train_epochs = 182
66
    FLAGS.model_dir = self._get_model_dir('benchmark_graph_1_gpu')
Toby Boyd's avatar
Toby Boyd committed
67
    FLAGS.dtype = 'fp32'
68
    self._run_and_report_benchmark()
Toby Boyd's avatar
Toby Boyd committed
69
70

  def benchmark_1_gpu(self):
71
72
    """Test keras based model with eager and distribution strategies."""
    self._setup()
Toby Boyd's avatar
Toby Boyd committed
73
    FLAGS.num_gpus = 1
74
    FLAGS.data_dir = self.data_dir
Toby Boyd's avatar
Toby Boyd committed
75
76
    FLAGS.batch_size = 128
    FLAGS.train_epochs = 182
77
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu')
Toby Boyd's avatar
Toby Boyd committed
78
79
    FLAGS.dtype = 'fp32'
    FLAGS.enable_eager = True
80
    self._run_and_report_benchmark()
81

Toby Boyd's avatar
Toby Boyd committed
82
  def benchmark_2_gpu(self):
83
84
    """Test keras based model with eager and distribution strategies."""
    self._setup()
Toby Boyd's avatar
Toby Boyd committed
85
    FLAGS.num_gpus = 2
86
    FLAGS.data_dir = self.data_dir
Toby Boyd's avatar
Toby Boyd committed
87
88
    FLAGS.batch_size = 128
    FLAGS.train_epochs = 182
89
    FLAGS.model_dir = self._get_model_dir('benchmark_2_gpu')
Toby Boyd's avatar
Toby Boyd committed
90
91
    FLAGS.dtype = 'fp32'
    FLAGS.enable_eager = True
92
    self._run_and_report_benchmark()
Toby Boyd's avatar
Toby Boyd committed
93
94

  def benchmark_graph_2_gpu(self):
95
96
    """Test keras based model with Keras fit and distribution strategies."""
    self._setup()
Toby Boyd's avatar
Toby Boyd committed
97
    FLAGS.num_gpus = 2
98
    FLAGS.data_dir = self.data_dir
Toby Boyd's avatar
Toby Boyd committed
99
100
    FLAGS.batch_size = 128
    FLAGS.train_epochs = 182
101
    FLAGS.model_dir = self._get_model_dir('benchmark_graph_2_gpu')
Toby Boyd's avatar
Toby Boyd committed
102
    FLAGS.dtype = 'fp32'
103
    self._run_and_report_benchmark()
Toby Boyd's avatar
Toby Boyd committed
104
105

  def benchmark_graph_1_gpu_no_dist_strat(self):
106
    """Test keras based model with Keras fit but not distribution strategies."""
Toby Boyd's avatar
Toby Boyd committed
107
    self._setup()
108
    FLAGS.distribution_strategy = 'off'
Toby Boyd's avatar
Toby Boyd committed
109
    FLAGS.num_gpus = 1
110
    FLAGS.data_dir = self.data_dir
Toby Boyd's avatar
Toby Boyd committed
111
112
    FLAGS.batch_size = 128
    FLAGS.train_epochs = 182
113
    FLAGS.model_dir = self._get_model_dir('benchmark_graph_1_gpu_no_dist_strat')
Toby Boyd's avatar
Toby Boyd committed
114
    FLAGS.dtype = 'fp32'
115
116
117
118
    self._run_and_report_benchmark()

  def _run_and_report_benchmark(self):
    start_time_sec = time.time()
Toby Boyd's avatar
Toby Boyd committed
119
    stats = keras_cifar_main.run(FLAGS)
120
    wall_time_sec = time.time() - start_time_sec
Toby Boyd's avatar
Toby Boyd committed
121

122
    super(Resnet56KerasAccuracy, self)._report_benchmark(
Toby Boyd's avatar
Toby Boyd committed
123
        stats,
124
        wall_time_sec,
Toby Boyd's avatar
Toby Boyd committed
125
126
        top_1_min=MIN_TOP_1_ACCURACY,
        top_1_max=MAX_TOP_1_ACCURACY,
127
        total_batch_size=FLAGS.batch_size,
Toby Boyd's avatar
Toby Boyd committed
128
129
130
131
132
133
134
        log_steps=100)


class Resnet56KerasBenchmarkBase(keras_benchmark.KerasBenchmark):
  """Short performance tests for ResNet56 via Keras and CIFAR-10."""

  def __init__(self, output_dir=None, default_flags=None):
135
136
137
    flag_methods = [
        keras_common.define_keras_flags, cifar_main.define_cifar_flags
    ]
Toby Boyd's avatar
Toby Boyd committed
138
139
140
141
142
143

    super(Resnet56KerasBenchmarkBase, self).__init__(
        output_dir=output_dir,
        flag_methods=flag_methods,
        default_flags=default_flags)

144
145
  def _run_and_report_benchmark(self):
    start_time_sec = time.time()
Toby Boyd's avatar
Toby Boyd committed
146
    stats = keras_cifar_main.run(FLAGS)
147
148
149
150
151
152
153
    wall_time_sec = time.time() - start_time_sec

    super(Resnet56KerasBenchmarkBase, self)._report_benchmark(
        stats,
        wall_time_sec,
        total_batch_size=FLAGS.batch_size,
        log_steps=FLAGS.log_steps)
Toby Boyd's avatar
Toby Boyd committed
154
155
156
157
158

  def benchmark_1_gpu_no_dist_strat(self):
    self._setup()
    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
159
    FLAGS.distribution_strategy = 'off'
160
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_no_dist_strat')
Toby Boyd's avatar
Toby Boyd committed
161
    FLAGS.batch_size = 128
162
    self._run_and_report_benchmark()
Toby Boyd's avatar
Toby Boyd committed
163
164
165
166
167

  def benchmark_graph_1_gpu_no_dist_strat(self):
    self._setup()
    FLAGS.num_gpus = 1
    FLAGS.enable_eager = False
168
    FLAGS.distribution_strategy = 'off'
169
    FLAGS.model_dir = self._get_model_dir('benchmark_graph_1_gpu_no_dist_strat')
Toby Boyd's avatar
Toby Boyd committed
170
    FLAGS.batch_size = 128
171
    self._run_and_report_benchmark()
Toby Boyd's avatar
Toby Boyd committed
172
173
174
175
176

  def benchmark_1_gpu(self):
    self._setup()
    FLAGS.num_gpus = 1
    FLAGS.enable_eager = True
177
    FLAGS.distribution_strategy = 'default'
178
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu')
Toby Boyd's avatar
Toby Boyd committed
179
    FLAGS.batch_size = 128
180
    self._run_and_report_benchmark()
Toby Boyd's avatar
Toby Boyd committed
181
182
183
184
185

  def benchmark_graph_1_gpu(self):
    self._setup()
    FLAGS.num_gpus = 1
    FLAGS.enable_eager = False
186
    FLAGS.distribution_strategy = 'default'
187
    FLAGS.model_dir = self._get_model_dir('benchmark_graph_1_gpu')
Toby Boyd's avatar
Toby Boyd committed
188
    FLAGS.batch_size = 128
189
    self._run_and_report_benchmark()
Toby Boyd's avatar
Toby Boyd committed
190
191
192
193
194

  def benchmark_2_gpu(self):
    self._setup()
    FLAGS.num_gpus = 2
    FLAGS.enable_eager = True
195
    FLAGS.distribution_strategy = 'default'
196
    FLAGS.model_dir = self._get_model_dir('benchmark_2_gpu')
Toby Boyd's avatar
Toby Boyd committed
197
    FLAGS.batch_size = 128 * 2  # 2 GPUs
198
    self._run_and_report_benchmark()
Toby Boyd's avatar
Toby Boyd committed
199
200
201
202
203

  def benchmark_graph_2_gpu(self):
    self._setup()
    FLAGS.num_gpus = 2
    FLAGS.enable_eager = False
204
    FLAGS.distribution_strategy = 'default'
205
    FLAGS.model_dir = self._get_model_dir('benchmark_graph_2_gpu')
Toby Boyd's avatar
Toby Boyd committed
206
    FLAGS.batch_size = 128 * 2  # 2 GPUs
207
    self._run_and_report_benchmark()
Toby Boyd's avatar
Toby Boyd committed
208
209
210
211
212


class Resnet56KerasBenchmarkSynth(Resnet56KerasBenchmarkBase):
  """Synthetic benchmarks for ResNet56 and Keras."""

213
  def __init__(self, output_dir=None, root_data_dir=None, **kwargs):
214
215
216
217
218
    default_flags = {}
    default_flags['skip_eval'] = True
    default_flags['use_synthetic_data'] = True
    default_flags['train_steps'] = 110
    default_flags['log_steps'] = 10
Toby Boyd's avatar
Toby Boyd committed
219

220
    super(Resnet56KerasBenchmarkSynth, self).__init__(
221
        output_dir=output_dir, default_flags=default_flags)
Toby Boyd's avatar
Toby Boyd committed
222
223
224
225
226


class Resnet56KerasBenchmarkReal(Resnet56KerasBenchmarkBase):
  """Real data benchmarks for ResNet56 and Keras."""

227
  def __init__(self, output_dir=None, root_data_dir=None, **kwargs):
228
229
230
231
232
    default_flags = {}
    default_flags['skip_eval'] = True
    default_flags['data_dir'] = os.path.join(root_data_dir, CIFAR_DATA_DIR_NAME)
    default_flags['train_steps'] = 110
    default_flags['log_steps'] = 10
Toby Boyd's avatar
Toby Boyd committed
233

234
    super(Resnet56KerasBenchmarkReal, self).__init__(
235
        output_dir=output_dir, default_flags=default_flags)
236
237
238
239


if __name__ == '__main__':
  tf.test.main()