transformer.py 16.4 KB
Newer Older
Hongkun Yu's avatar
Hongkun Yu committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Keras-based transformer block layer."""
16
# pylint: disable=g-classes-have-attributes
Hongkun Yu's avatar
Hongkun Yu committed
17

Chen Chen's avatar
Chen Chen committed
18
import gin
Hongkun Yu's avatar
Hongkun Yu committed
19
20
import tensorflow as tf

21
from official.nlp import keras_nlp
Hongkun Yu's avatar
Hongkun Yu committed
22
from official.nlp.modeling.layers import attention
23
from official.nlp.modeling.layers import multi_channel_attention
24
from official.nlp.modeling.layers.util import tf_function_if_eager
Hongkun Yu's avatar
Hongkun Yu committed
25
26
27


@tf.keras.utils.register_keras_serializable(package="Text")
28
class Transformer(keras_nlp.layers.TransformerEncoderBlock):
Hongkun Yu's avatar
Hongkun Yu committed
29
30
31
32
33
  """Transformer layer.

  This layer implements the Transformer from "Attention Is All You Need".
  (https://arxiv.org/abs/1706.03762).

34
  Args:
Hongkun Yu's avatar
Hongkun Yu committed
35
36
37
38
39
    num_attention_heads: Number of attention heads.
    intermediate_size: Size of the intermediate layer.
    intermediate_activation: Activation for the intermediate layer.
    dropout_rate: Dropout probability for the post-attention and output dropout.
    attention_dropout_rate: Dropout probability for within the attention layer.
40
41
    output_range: the sequence output range, [0, output_range) by slicing the
      target sequence. `None` means the target sequence is not sliced.
Hongkun Yu's avatar
Hongkun Yu committed
42
43
44
45
46
47
48
    kernel_initializer: Initializer for dense layer kernels.
    bias_initializer: Initializer for dense layer biases.
    kernel_regularizer: Regularizer for dense layer kernels.
    bias_regularizer: Regularizer for dense layer biases.
    activity_regularizer: Regularizer for dense layer activity.
    kernel_constraint: Constraint for dense layer kernels.
    bias_constraint: Constraint for dense layer kernels.
xinliupitt's avatar
xinliupitt committed
49
50
    use_bias: Whether to enable use_bias in attention layer. If set False,
      use_bias in attention layer is disabled.
xinliupitt's avatar
xinliupitt committed
51
    norm_first: Whether to normalize inputs to attention and intermediate dense
52
53
      layers. If set False, output of attention and intermediate dense layers is
      normalized.
xinliupitt's avatar
xinliupitt committed
54
    norm_epsilon: Epsilon value to initialize normalization layers.
55
    intermediate_dropout: Dropout probability for intermediate_dropout_layer.
xinliupitt's avatar
xinliupitt committed
56
57
    attention_initializer: Initializer for kernels of attention layers. If set
      `None`, attention layers use kernel_initializer as initializer for kernel.
Hongkun Yu's avatar
Hongkun Yu committed
58
59
60
61
62
63
64
65
  """

  def __init__(self,
               num_attention_heads,
               intermediate_size,
               intermediate_activation,
               dropout_rate=0.0,
               attention_dropout_rate=0.0,
66
               output_range=None,
Hongkun Yu's avatar
Hongkun Yu committed
67
68
69
70
71
72
73
               kernel_initializer="glorot_uniform",
               bias_initializer="zeros",
               kernel_regularizer=None,
               bias_regularizer=None,
               activity_regularizer=None,
               kernel_constraint=None,
               bias_constraint=None,
xinliupitt's avatar
xinliupitt committed
74
75
76
               use_bias=True,
               norm_first=False,
               norm_epsilon=1e-12,
xinliupitt's avatar
xinliupitt committed
77
               intermediate_dropout=0.0,
xinliupitt's avatar
xinliupitt committed
78
               attention_initializer=None,
Hongkun Yu's avatar
Hongkun Yu committed
79
               **kwargs):
80
    super().__init__(
Zhenyu Tan's avatar
Zhenyu Tan committed
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
        num_attention_heads=num_attention_heads,
        inner_dim=intermediate_size,
        inner_activation=intermediate_activation,
        output_dropout=dropout_rate,
        attention_dropout=attention_dropout_rate,
        output_range=output_range,
        kernel_initializer=kernel_initializer,
        bias_initializer=bias_initializer,
        kernel_regularizer=kernel_regularizer,
        bias_regularizer=bias_regularizer,
        activity_regularizer=activity_regularizer,
        kernel_constraint=kernel_constraint,
        bias_constraint=bias_constraint,
        use_bias=use_bias,
        norm_first=norm_first,
        norm_epsilon=norm_epsilon,
        inner_dropout=intermediate_dropout,
        attention_initializer=attention_initializer,
        **kwargs)
100
101


Chen Chen's avatar
Chen Chen committed
102
103
@tf.keras.utils.register_keras_serializable(package="Text")
@gin.configurable
104
105
106
107
class CompiledTransformer(Transformer):

  @tf_function_if_eager(experimental_compile=True)
  def call(self, inputs):
108
    return super().call(inputs)
109
110
111


@tf.keras.utils.register_keras_serializable(package="Text")
Hongkun Yu's avatar
Hongkun Yu committed
112
class TransformerDecoderBlock(tf.keras.layers.Layer):
113
114
115
116
117
118
  """Single transformer layer for decoder.

  It has three sub-layers:
  (1) a multi-head self-attention mechanism.
  (2) a encoder-decoder attention.
  (3) a positionwise fully connected feed-forward network.
Hongkun Yu's avatar
Hongkun Yu committed
119

120
  Args:
Hongkun Yu's avatar
Hongkun Yu committed
121
122
123
124
125
126
127
128
129
130
131
132
133
134
    num_attention_heads: Number of attention heads.
    intermediate_size: Size of the intermediate layer.
    intermediate_activation: Activation for the intermediate layer.
    dropout_rate: Dropout probability for the post-attention and output dropout.
    attention_dropout_rate: Dropout probability for within the attention layer.
    multi_channel_cross_attention: Whether to use `MultiChannelAttention` for
      cross-attention between target sequences and source sequences.
    kernel_initializer: Initializer for dense layer kernels.
    bias_initializer: Initializer for dense layer biases.
    kernel_regularizer: Regularizer for dense layer kernels.
    bias_regularizer: Regularizer for dense layer biases.
    activity_regularizer: Regularizer for dense layer activity.
    kernel_constraint: Constraint for dense layer kernels.
    bias_constraint: Constraint for dense layer kernels.
xinliupitt's avatar
xinliupitt committed
135
136
    use_bias: Whether to enable use_bias in attention layer. If set False,
      use_bias in attention layer is disabled.
xinliupitt's avatar
xinliupitt committed
137
    norm_first: Whether to normalize inputs to attention and intermediate dense
138
139
      layers. If set False, output of attention and intermediate dense layers is
      normalized.
xinliupitt's avatar
xinliupitt committed
140
    norm_epsilon: Epsilon value to initialize normalization layers.
141
    intermediate_dropout: Dropout probability for intermediate_dropout_layer.
xinliupitt's avatar
xinliupitt committed
142
143
    attention_initializer: Initializer for kernels of attention layers. If set
      `None`, attention layers use kernel_initializer as initializer for kernel.
144
145
146
  """

  def __init__(self,
Hongkun Yu's avatar
Hongkun Yu committed
147
148
149
150
151
               num_attention_heads,
               intermediate_size,
               intermediate_activation,
               dropout_rate=0.0,
               attention_dropout_rate=0.0,
152
               multi_channel_cross_attention=False,
Hongkun Yu's avatar
Hongkun Yu committed
153
154
155
156
157
158
159
               kernel_initializer="glorot_uniform",
               bias_initializer="zeros",
               kernel_regularizer=None,
               bias_regularizer=None,
               activity_regularizer=None,
               kernel_constraint=None,
               bias_constraint=None,
xinliupitt's avatar
xinliupitt committed
160
161
162
               use_bias=True,
               norm_first=False,
               norm_epsilon=1e-12,
xinliupitt's avatar
xinliupitt committed
163
               intermediate_dropout=0.0,
xinliupitt's avatar
xinliupitt committed
164
               attention_initializer=None,
165
               **kwargs):
Hongkun Yu's avatar
Hongkun Yu committed
166
    super().__init__(**kwargs)
167
168
169
170
    self.num_attention_heads = num_attention_heads
    self.intermediate_size = intermediate_size
    self.intermediate_activation = tf.keras.activations.get(
        intermediate_activation)
Hongkun Yu's avatar
Hongkun Yu committed
171
172
    self.dropout_rate = dropout_rate
    self.attention_dropout_rate = attention_dropout_rate
173
    self.multi_channel_cross_attention = multi_channel_cross_attention
Hongkun Yu's avatar
Hongkun Yu committed
174
175
176
177
178
179
180
    self._kernel_initializer = tf.keras.initializers.get(kernel_initializer)
    self._bias_initializer = tf.keras.initializers.get(bias_initializer)
    self._kernel_regularizer = tf.keras.regularizers.get(kernel_regularizer)
    self._bias_regularizer = tf.keras.regularizers.get(bias_regularizer)
    self._activity_regularizer = tf.keras.regularizers.get(activity_regularizer)
    self._kernel_constraint = tf.keras.constraints.get(kernel_constraint)
    self._bias_constraint = tf.keras.constraints.get(bias_constraint)
xinliupitt's avatar
xinliupitt committed
181
182
183
    self._use_bias = use_bias
    self._norm_first = norm_first
    self._norm_epsilon = norm_epsilon
xinliupitt's avatar
xinliupitt committed
184
    self._intermediate_dropout = intermediate_dropout
xinliupitt's avatar
xinliupitt committed
185
    if attention_initializer:
xinliupitt's avatar
xinliupitt committed
186
187
      self._attention_initializer = tf.keras.initializers.get(
          attention_initializer)
xinliupitt's avatar
xinliupitt committed
188
189
    else:
      self._attention_initializer = self._kernel_initializer
190
191
192
193
194
    if self.multi_channel_cross_attention:
      self._cross_attention_cls = multi_channel_attention.MultiChannelAttention
    else:
      self._cross_attention_cls = attention.MultiHeadAttention

Hongkun Yu's avatar
Hongkun Yu committed
195
196
  def build(self, input_shape):
    target_tensor_shape = tf.TensorShape(input_shape[0])
197
    if len(target_tensor_shape.as_list()) != 3:
Hongkun Yu's avatar
Hongkun Yu committed
198
199
200
201
      raise ValueError("TransformerLayer expects a three-dimensional input of "
                       "shape [batch, sequence, width].")
    hidden_size = target_tensor_shape[2]
    if hidden_size % self.num_attention_heads != 0:
202
203
      raise ValueError(
          "The hidden size (%d) is not a multiple of the number of attention "
Hongkun Yu's avatar
Hongkun Yu committed
204
          "heads (%d)" % (hidden_size, self.num_attention_heads))
205
    self.attention_head_size = int(hidden_size) // self.num_attention_heads
206
    common_kwargs = dict(
207
        bias_initializer=self._bias_initializer,
Hongkun Yu's avatar
Hongkun Yu committed
208
209
210
211
        kernel_regularizer=self._kernel_regularizer,
        bias_regularizer=self._bias_regularizer,
        activity_regularizer=self._activity_regularizer,
        kernel_constraint=self._kernel_constraint,
212
213
214
215
        bias_constraint=self._bias_constraint)
    # Self attention.
    self.self_attention = attention.CachedAttention(
        num_heads=self.num_attention_heads,
216
        key_dim=self.attention_head_size,
217
        dropout=self.attention_dropout_rate,
xinliupitt's avatar
xinliupitt committed
218
        use_bias=self._use_bias,
xinliupitt's avatar
xinliupitt committed
219
        kernel_initializer=self._attention_initializer,
220
221
222
223
224
225
        name="self_attention",
        **common_kwargs)
    self.self_attention_output_dense = tf.keras.layers.experimental.EinsumDense(
        "abc,cd->abd",
        output_shape=(None, hidden_size),
        bias_axes="d",
xinliupitt's avatar
xinliupitt committed
226
        kernel_initializer=self._kernel_initializer,
227
228
        name="output",
        **common_kwargs)
229
    self.self_attention_dropout = tf.keras.layers.Dropout(
Hongkun Yu's avatar
Hongkun Yu committed
230
        rate=self.dropout_rate)
231
232
    self.self_attention_layer_norm = (
        tf.keras.layers.LayerNormalization(
xinliupitt's avatar
xinliupitt committed
233
            name="self_attention_layer_norm",
234
235
            axis=-1,
            epsilon=self._norm_epsilon))
236
237
238
    # Encoder-decoder attention.
    self.encdec_attention = self._cross_attention_cls(
        num_heads=self.num_attention_heads,
239
        key_dim=self.attention_head_size,
Hongkun Yu's avatar
Hongkun Yu committed
240
241
        dropout=self.attention_dropout_rate,
        output_shape=hidden_size,
xinliupitt's avatar
xinliupitt committed
242
        use_bias=self._use_bias,
xinliupitt's avatar
xinliupitt committed
243
        kernel_initializer=self._attention_initializer,
244
245
        name="attention/encdec",
        **common_kwargs)
246
247

    self.encdec_attention_dropout = tf.keras.layers.Dropout(
Hongkun Yu's avatar
Hongkun Yu committed
248
        rate=self.dropout_rate)
249
250
    self.encdec_attention_layer_norm = (
        tf.keras.layers.LayerNormalization(
xinliupitt's avatar
xinliupitt committed
251
            name="attention/encdec_output_layer_norm",
252
253
            axis=-1,
            epsilon=self._norm_epsilon))
254
255

    # Feed-forward projection.
256
257
258
259
    self.intermediate_dense = tf.keras.layers.experimental.EinsumDense(
        "abc,cd->abd",
        output_shape=(None, self.intermediate_size),
        bias_axes="d",
xinliupitt's avatar
xinliupitt committed
260
        kernel_initializer=self._kernel_initializer,
261
262
        name="intermediate",
        **common_kwargs)
263
264
    self.intermediate_activation_layer = tf.keras.layers.Activation(
        self.intermediate_activation)
265
266
    self._intermediate_dropout_layer = tf.keras.layers.Dropout(
        rate=self._intermediate_dropout)
267
268
269
270
    self.output_dense = tf.keras.layers.experimental.EinsumDense(
        "abc,cd->abd",
        output_shape=(None, hidden_size),
        bias_axes="d",
xinliupitt's avatar
xinliupitt committed
271
        kernel_initializer=self._kernel_initializer,
272
273
        name="output",
        **common_kwargs)
Hongkun Yu's avatar
Hongkun Yu committed
274
    self.output_dropout = tf.keras.layers.Dropout(rate=self.dropout_rate)
275
    self.output_layer_norm = tf.keras.layers.LayerNormalization(
xinliupitt's avatar
xinliupitt committed
276
        name="output_layer_norm", axis=-1, epsilon=self._norm_epsilon)
Hongkun Yu's avatar
Hongkun Yu committed
277
    super().build(input_shape)
278

xinliupitt's avatar
xinliupitt committed
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
  def get_config(self):
    config = {
        "num_attention_heads":
            self.num_attention_heads,
        "intermediate_size":
            self.intermediate_size,
        "intermediate_activation":
            self.intermediate_activation,
        "dropout_rate":
            self.dropout_rate,
        "attention_dropout_rate":
            self.attention_dropout_rate,
        "multi_channel_cross_attention":
            self.multi_channel_cross_attention,
        "kernel_initializer":
            tf.keras.initializers.serialize(self._kernel_initializer),
        "bias_initializer":
            tf.keras.initializers.serialize(self._bias_initializer),
        "kernel_regularizer":
            tf.keras.regularizers.serialize(self._kernel_regularizer),
        "bias_regularizer":
            tf.keras.regularizers.serialize(self._bias_regularizer),
        "activity_regularizer":
            tf.keras.regularizers.serialize(self._activity_regularizer),
        "kernel_constraint":
            tf.keras.constraints.serialize(self._kernel_constraint),
        "bias_constraint":
            tf.keras.constraints.serialize(self._bias_constraint),
        "use_bias":
            self._use_bias,
        "norm_first":
            self._norm_first,
        "norm_epsilon":
xinliupitt's avatar
xinliupitt committed
312
313
            self._norm_epsilon,
        "intermediate_dropout":
xinliupitt's avatar
xinliupitt committed
314
315
            self._intermediate_dropout,
        "attention_initializer":
xinliupitt's avatar
xinliupitt committed
316
            tf.keras.initializers.serialize(self._attention_initializer)
xinliupitt's avatar
xinliupitt committed
317
    }
Hongkun Yu's avatar
Hongkun Yu committed
318
    base_config = super().get_config()
xinliupitt's avatar
xinliupitt committed
319
320
    return dict(list(base_config.items()) + list(config.items()))

321
322
323
324
325
326
327
328
329
330
331
  def common_layers_with_encoder(self):
    """Gets layer objects that can make a Transformer encoder block."""
    return [
        self.self_attention, self.self_attention_layer_norm,
        self.intermediate_dense, self.output_dense, self.output_layer_norm
    ]

  def call(self, inputs, cache=None, decode_loop_step=None):
    if self.multi_channel_cross_attention:
      if len(inputs) != 5:
        raise ValueError(
Hongkun Yu's avatar
Hongkun Yu committed
332
            "TransformerDecoderBlock must have 5 inputs, when it uses "
333
334
335
            "multi_channel_cross_attention. But it got: %d" % len(inputs))
    elif len(inputs) != 4:
      raise ValueError(
Hongkun Yu's avatar
Hongkun Yu committed
336
          "TransformerDecoderBlock must have 4 inputs, but it got: %d" %
337
338
          len(inputs))
    input_tensor, memory, attention_mask, self_attention_mask = inputs[:4]
xinliupitt's avatar
xinliupitt committed
339
340
341
    source_tensor = input_tensor
    if self._norm_first:
      input_tensor = self.self_attention_layer_norm(input_tensor)
342
    self_attention_output, cache = self.self_attention(
343
344
        query=input_tensor,
        value=input_tensor,
345
346
347
348
        attention_mask=self_attention_mask,
        cache=cache,
        decode_loop_step=decode_loop_step)
    self_attention_output = self.self_attention_dropout(self_attention_output)
xinliupitt's avatar
xinliupitt committed
349
350
351
352
353
354
355
356
357
    if self._norm_first:
      self_attention_output = source_tensor + self_attention_output
    else:
      self_attention_output = self.self_attention_layer_norm(
          input_tensor + self_attention_output)
    if self._norm_first:
      source_self_attention_output = self_attention_output
      self_attention_output = self.encdec_attention_layer_norm(
          self_attention_output)
358
359
360
361
    cross_attn_inputs = dict(
        query=self_attention_output,
        value=memory,
        attention_mask=attention_mask)
362
363
    if self.multi_channel_cross_attention:
      # Accesses the 5-th input tensor for the doc-attention probabilities.
364
365
      cross_attn_inputs["context_attention_weights"] = inputs[-1]
    attention_output = self.encdec_attention(**cross_attn_inputs)
366
    attention_output = self.encdec_attention_dropout(attention_output)
xinliupitt's avatar
xinliupitt committed
367
368
369
370
    if self._norm_first:
      attention_output = source_self_attention_output + attention_output
    else:
      attention_output = self.encdec_attention_layer_norm(
371
          self_attention_output + attention_output)
xinliupitt's avatar
xinliupitt committed
372
373
374
    if self._norm_first:
      source_attention_output = attention_output
      attention_output = self.output_layer_norm(attention_output)
375
376
377
378

    intermediate_output = self.intermediate_dense(attention_output)
    intermediate_output = self.intermediate_activation_layer(
        intermediate_output)
379
    intermediate_output = self._intermediate_dropout_layer(intermediate_output)
380
381
    layer_output = self.output_dense(intermediate_output)
    layer_output = self.output_dropout(layer_output)
xinliupitt's avatar
xinliupitt committed
382
383
384
385
    if self._norm_first:
      layer_output = source_attention_output + layer_output
    else:
      layer_output = self.output_layer_norm(layer_output + attention_output)
386
    return layer_output, cache