transformer.py 24 KB
Newer Older
Hongkun Yu's avatar
Hongkun Yu committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Keras-based transformer block layer."""
16
# pylint: disable=g-classes-have-attributes
Hongkun Yu's avatar
Hongkun Yu committed
17
18
19
20
21
from __future__ import absolute_import
from __future__ import division
# from __future__ import google_type_annotations
from __future__ import print_function

Chen Chen's avatar
Chen Chen committed
22
import gin
Hongkun Yu's avatar
Hongkun Yu committed
23
24
25
import tensorflow as tf

from official.nlp.modeling.layers import attention
26
from official.nlp.modeling.layers import multi_channel_attention
27
from official.nlp.modeling.layers.util import tf_function_if_eager
Hongkun Yu's avatar
Hongkun Yu committed
28
29
30
31
32
33
34
35
36


@tf.keras.utils.register_keras_serializable(package="Text")
class Transformer(tf.keras.layers.Layer):
  """Transformer layer.

  This layer implements the Transformer from "Attention Is All You Need".
  (https://arxiv.org/abs/1706.03762).

37
  Arguments:
Hongkun Yu's avatar
Hongkun Yu committed
38
39
40
41
42
    num_attention_heads: Number of attention heads.
    intermediate_size: Size of the intermediate layer.
    intermediate_activation: Activation for the intermediate layer.
    dropout_rate: Dropout probability for the post-attention and output dropout.
    attention_dropout_rate: Dropout probability for within the attention layer.
43
44
    output_range: the sequence output range, [0, output_range) by slicing the
      target sequence. `None` means the target sequence is not sliced.
Hongkun Yu's avatar
Hongkun Yu committed
45
46
47
48
49
50
51
    kernel_initializer: Initializer for dense layer kernels.
    bias_initializer: Initializer for dense layer biases.
    kernel_regularizer: Regularizer for dense layer kernels.
    bias_regularizer: Regularizer for dense layer biases.
    activity_regularizer: Regularizer for dense layer activity.
    kernel_constraint: Constraint for dense layer kernels.
    bias_constraint: Constraint for dense layer kernels.
xinliupitt's avatar
xinliupitt committed
52
53
    use_bias: Whether to enable use_bias in attention layer. If set False,
      use_bias in attention layer is disabled.
xinliupitt's avatar
xinliupitt committed
54
    norm_first: Whether to normalize inputs to attention and intermediate dense
55
56
      layers. If set False, output of attention and intermediate dense layers is
      normalized.
xinliupitt's avatar
xinliupitt committed
57
    norm_epsilon: Epsilon value to initialize normalization layers.
58
    intermediate_dropout: Dropout probability for intermediate_dropout_layer.
xinliupitt's avatar
xinliupitt committed
59
60
    attention_initializer: Initializer for kernels of attention layers. If set
      `None`, attention layers use kernel_initializer as initializer for kernel.
Hongkun Yu's avatar
Hongkun Yu committed
61
62
63
64
65
66
67
68
  """

  def __init__(self,
               num_attention_heads,
               intermediate_size,
               intermediate_activation,
               dropout_rate=0.0,
               attention_dropout_rate=0.0,
69
               output_range=None,
Hongkun Yu's avatar
Hongkun Yu committed
70
71
72
73
74
75
76
               kernel_initializer="glorot_uniform",
               bias_initializer="zeros",
               kernel_regularizer=None,
               bias_regularizer=None,
               activity_regularizer=None,
               kernel_constraint=None,
               bias_constraint=None,
xinliupitt's avatar
xinliupitt committed
77
78
79
               use_bias=True,
               norm_first=False,
               norm_epsilon=1e-12,
xinliupitt's avatar
xinliupitt committed
80
               intermediate_dropout=0.0,
xinliupitt's avatar
xinliupitt committed
81
               attention_initializer=None,
Hongkun Yu's avatar
Hongkun Yu committed
82
83
84
85
86
87
88
89
               **kwargs):
    super(Transformer, self).__init__(**kwargs)

    self._num_heads = num_attention_heads
    self._intermediate_size = intermediate_size
    self._intermediate_activation = intermediate_activation
    self._attention_dropout_rate = attention_dropout_rate
    self._dropout_rate = dropout_rate
90
    self._output_range = output_range
Hongkun Yu's avatar
Hongkun Yu committed
91
92
93
94
    self._kernel_initializer = tf.keras.initializers.get(kernel_initializer)
    self._bias_initializer = tf.keras.initializers.get(bias_initializer)
    self._kernel_regularizer = tf.keras.regularizers.get(kernel_regularizer)
    self._bias_regularizer = tf.keras.regularizers.get(bias_regularizer)
Hongkun Yu's avatar
Hongkun Yu committed
95
    self._activity_regularizer = tf.keras.regularizers.get(activity_regularizer)
Hongkun Yu's avatar
Hongkun Yu committed
96
97
    self._kernel_constraint = tf.keras.constraints.get(kernel_constraint)
    self._bias_constraint = tf.keras.constraints.get(bias_constraint)
xinliupitt's avatar
xinliupitt committed
98
99
100
    self._use_bias = use_bias
    self._norm_first = norm_first
    self._norm_epsilon = norm_epsilon
xinliupitt's avatar
xinliupitt committed
101
    self._intermediate_dropout = intermediate_dropout
xinliupitt's avatar
xinliupitt committed
102
103
104
105
    if attention_initializer:
      self._attention_initializer = attention_initializer
    else:
      self._attention_initializer = self._kernel_initializer
Hongkun Yu's avatar
Hongkun Yu committed
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129

  def build(self, input_shape):
    input_tensor = input_shape[0] if len(input_shape) == 2 else input_shape
    input_tensor_shape = tf.TensorShape(input_tensor)
    if len(input_tensor_shape) != 3:
      raise ValueError("TransformerLayer expects a three-dimensional input of "
                       "shape [batch, sequence, width].")
    batch_size, sequence_length, hidden_size = input_tensor_shape

    if len(input_shape) == 2:
      mask_tensor_shape = tf.TensorShape(input_shape[1])
      expected_mask_tensor_shape = tf.TensorShape(
          [batch_size, sequence_length, sequence_length])
      if not expected_mask_tensor_shape.is_compatible_with(mask_tensor_shape):
        raise ValueError("When passing a mask tensor to TransformerLayer, the "
                         "mask tensor must be of shape [batch, "
                         "sequence_length, sequence_length] (here %s). Got a "
                         "mask tensor of shape %s." %
                         (expected_mask_tensor_shape, mask_tensor_shape))
    if hidden_size % self._num_heads != 0:
      raise ValueError(
          "The input size (%d) is not a multiple of the number of attention "
          "heads (%d)" % (hidden_size, self._num_heads))
    self._attention_head_size = int(hidden_size // self._num_heads)
130
    common_kwargs = dict(
Hongkun Yu's avatar
Hongkun Yu committed
131
132
133
134
135
        bias_initializer=self._bias_initializer,
        kernel_regularizer=self._kernel_regularizer,
        bias_regularizer=self._bias_regularizer,
        activity_regularizer=self._activity_regularizer,
        kernel_constraint=self._kernel_constraint,
136
137
138
139
140
        bias_constraint=self._bias_constraint)
    self._attention_layer = attention.MultiHeadAttention(
        num_heads=self._num_heads,
        key_size=self._attention_head_size,
        dropout=self._attention_dropout_rate,
xinliupitt's avatar
xinliupitt committed
141
        use_bias=self._use_bias,
xinliupitt's avatar
xinliupitt committed
142
        kernel_initializer=self._attention_initializer,
143
144
        name="self_attention",
        **common_kwargs)
Hongkun Yu's avatar
Hongkun Yu committed
145
    self._attention_dropout = tf.keras.layers.Dropout(rate=self._dropout_rate)
Zongwei Zhou's avatar
Zongwei Zhou committed
146
147
    # Use float32 in layernorm for numeric stability.
    # It is probably safe in mixed_float16, but we haven't validated this yet.
Hongkun Yu's avatar
Hongkun Yu committed
148
149
    self._attention_layer_norm = (
        tf.keras.layers.LayerNormalization(
Chen Chen's avatar
Chen Chen committed
150
151
            name="self_attention_layer_norm",
            axis=-1,
xinliupitt's avatar
xinliupitt committed
152
            epsilon=self._norm_epsilon,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
153
            dtype=tf.float32))
154
155
156
157
    self._intermediate_dense = tf.keras.layers.experimental.EinsumDense(
        "abc,cd->abd",
        output_shape=(None, self._intermediate_size),
        bias_axes="d",
xinliupitt's avatar
xinliupitt committed
158
        kernel_initializer=self._kernel_initializer,
159
160
        name="intermediate",
        **common_kwargs)
161
162
163
164
165
166
    policy = tf.keras.mixed_precision.experimental.global_policy()
    if policy.name == "mixed_bfloat16":
      # bfloat16 causes BERT with the LAMB optimizer to not converge
      # as well, so we use float32.
      # TODO(b/154538392): Investigate this.
      policy = tf.float32
Chen Chen's avatar
Chen Chen committed
167
    self._intermediate_activation_layer = tf.keras.layers.Activation(
168
        self._intermediate_activation, dtype=policy)
169
170
    self._intermediate_dropout_layer = tf.keras.layers.Dropout(
        rate=self._intermediate_dropout)
171
172
173
174
175
    self._output_dense = tf.keras.layers.experimental.EinsumDense(
        "abc,cd->abd",
        output_shape=(None, hidden_size),
        bias_axes="d",
        name="output",
xinliupitt's avatar
xinliupitt committed
176
        kernel_initializer=self._kernel_initializer,
177
        **common_kwargs)
Hongkun Yu's avatar
Hongkun Yu committed
178
    self._output_dropout = tf.keras.layers.Dropout(rate=self._dropout_rate)
Zongwei Zhou's avatar
Zongwei Zhou committed
179
    # Use float32 in layernorm for numeric stability.
Hongkun Yu's avatar
Hongkun Yu committed
180
    self._output_layer_norm = tf.keras.layers.LayerNormalization(
181
182
183
        name="output_layer_norm",
        axis=-1,
        epsilon=self._norm_epsilon,
xinliupitt's avatar
xinliupitt committed
184
        dtype=tf.float32)
Hongkun Yu's avatar
Hongkun Yu committed
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199

    super(Transformer, self).build(input_shape)

  def get_config(self):
    config = {
        "num_attention_heads":
            self._num_heads,
        "intermediate_size":
            self._intermediate_size,
        "intermediate_activation":
            self._intermediate_activation,
        "dropout_rate":
            self._dropout_rate,
        "attention_dropout_rate":
            self._attention_dropout_rate,
200
201
        "output_range":
            self._output_range,
Hongkun Yu's avatar
Hongkun Yu committed
202
203
204
205
206
207
208
209
210
211
212
213
214
        "kernel_initializer":
            tf.keras.initializers.serialize(self._kernel_initializer),
        "bias_initializer":
            tf.keras.initializers.serialize(self._bias_initializer),
        "kernel_regularizer":
            tf.keras.regularizers.serialize(self._kernel_regularizer),
        "bias_regularizer":
            tf.keras.regularizers.serialize(self._bias_regularizer),
        "activity_regularizer":
            tf.keras.regularizers.serialize(self._activity_regularizer),
        "kernel_constraint":
            tf.keras.constraints.serialize(self._kernel_constraint),
        "bias_constraint":
xinliupitt's avatar
xinliupitt committed
215
216
217
218
219
220
            tf.keras.constraints.serialize(self._bias_constraint),
        "use_bias":
            self._use_bias,
        "norm_first":
            self._norm_first,
        "norm_epsilon":
xinliupitt's avatar
xinliupitt committed
221
222
            self._norm_epsilon,
        "intermediate_dropout":
xinliupitt's avatar
xinliupitt committed
223
224
225
            self._intermediate_dropout,
        "attention_initializer":
            self._attention_initializer
Hongkun Yu's avatar
Hongkun Yu committed
226
227
228
229
230
231
232
233
234
235
    }
    base_config = super(Transformer, self).get_config()
    return dict(list(base_config.items()) + list(config.items()))

  def call(self, inputs):
    if isinstance(inputs, (list, tuple)) and len(inputs) == 2:
      input_tensor, attention_mask = inputs
    else:
      input_tensor, attention_mask = (inputs, None)

236
237
238
239
    if self._output_range:
      target_tensor = input_tensor[:, 0:self._output_range, :]
      attention_mask = attention_mask[:, 0:self._output_range, :]
    else:
xinliupitt's avatar
xinliupitt committed
240
241
242
      if self._norm_first:
        source_tensor = input_tensor
        input_tensor = self._attention_layer_norm(input_tensor)
243
      target_tensor = input_tensor
Hongkun Yu's avatar
Hongkun Yu committed
244

245
246
    attention_output = self._attention_layer(
        query=target_tensor, value=input_tensor, attention_mask=attention_mask)
247
    attention_output = self._attention_dropout(attention_output)
xinliupitt's avatar
xinliupitt committed
248
249
250
251
252
253
254
255
    if self._norm_first:
      attention_output = source_tensor + attention_output
    else:
      attention_output = self._attention_layer_norm(target_tensor +
                                                    attention_output)
    if self._norm_first:
      source_attention_output = attention_output
      attention_output = self._output_layer_norm(attention_output)
256
257
258
    intermediate_output = self._intermediate_dense(attention_output)
    intermediate_output = self._intermediate_activation_layer(
        intermediate_output)
259
    intermediate_output = self._intermediate_dropout_layer(intermediate_output)
260
261
262
263
264
265
    layer_output = self._output_dense(intermediate_output)
    layer_output = self._output_dropout(layer_output)
    # During mixed precision training, attention_output is from layer norm and
    # is always fp32 for now. Cast layer_output to fp32 for the subsequent
    # add.
    layer_output = tf.cast(layer_output, tf.float32)
xinliupitt's avatar
xinliupitt committed
266
267
268
269
    if self._norm_first:
      layer_output = source_attention_output + layer_output
    else:
      layer_output = self._output_layer_norm(layer_output + attention_output)
270
271

    return layer_output
272
273


Chen Chen's avatar
Chen Chen committed
274
275
@tf.keras.utils.register_keras_serializable(package="Text")
@gin.configurable
276
277
278
279
280
class CompiledTransformer(Transformer):

  @tf_function_if_eager(experimental_compile=True)
  def call(self, inputs):
    return super(CompiledTransformer, self).call(inputs)
281
282
283
284
285
286
287
288
289
290


@tf.keras.utils.register_keras_serializable(package="Text")
class TransformerDecoderLayer(tf.keras.layers.Layer):
  """Single transformer layer for decoder.

  It has three sub-layers:
  (1) a multi-head self-attention mechanism.
  (2) a encoder-decoder attention.
  (3) a positionwise fully connected feed-forward network.
Hongkun Yu's avatar
Hongkun Yu committed
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306

  Arguments:
    num_attention_heads: Number of attention heads.
    intermediate_size: Size of the intermediate layer.
    intermediate_activation: Activation for the intermediate layer.
    dropout_rate: Dropout probability for the post-attention and output dropout.
    attention_dropout_rate: Dropout probability for within the attention layer.
    multi_channel_cross_attention: Whether to use `MultiChannelAttention` for
      cross-attention between target sequences and source sequences.
    kernel_initializer: Initializer for dense layer kernels.
    bias_initializer: Initializer for dense layer biases.
    kernel_regularizer: Regularizer for dense layer kernels.
    bias_regularizer: Regularizer for dense layer biases.
    activity_regularizer: Regularizer for dense layer activity.
    kernel_constraint: Constraint for dense layer kernels.
    bias_constraint: Constraint for dense layer kernels.
xinliupitt's avatar
xinliupitt committed
307
308
    use_bias: Whether to enable use_bias in attention layer. If set False,
      use_bias in attention layer is disabled.
xinliupitt's avatar
xinliupitt committed
309
    norm_first: Whether to normalize inputs to attention and intermediate dense
310
311
      layers. If set False, output of attention and intermediate dense layers is
      normalized.
xinliupitt's avatar
xinliupitt committed
312
    norm_epsilon: Epsilon value to initialize normalization layers.
313
    intermediate_dropout: Dropout probability for intermediate_dropout_layer.
xinliupitt's avatar
xinliupitt committed
314
315
    attention_initializer: Initializer for kernels of attention layers. If set
      `None`, attention layers use kernel_initializer as initializer for kernel.
316
317
318
  """

  def __init__(self,
Hongkun Yu's avatar
Hongkun Yu committed
319
320
321
322
323
               num_attention_heads,
               intermediate_size,
               intermediate_activation,
               dropout_rate=0.0,
               attention_dropout_rate=0.0,
324
               multi_channel_cross_attention=False,
Hongkun Yu's avatar
Hongkun Yu committed
325
326
327
328
329
330
331
               kernel_initializer="glorot_uniform",
               bias_initializer="zeros",
               kernel_regularizer=None,
               bias_regularizer=None,
               activity_regularizer=None,
               kernel_constraint=None,
               bias_constraint=None,
xinliupitt's avatar
xinliupitt committed
332
333
334
               use_bias=True,
               norm_first=False,
               norm_epsilon=1e-12,
xinliupitt's avatar
xinliupitt committed
335
               intermediate_dropout=0.0,
xinliupitt's avatar
xinliupitt committed
336
               attention_initializer=None,
337
338
339
340
341
342
               **kwargs):
    super(TransformerDecoderLayer, self).__init__(**kwargs)
    self.num_attention_heads = num_attention_heads
    self.intermediate_size = intermediate_size
    self.intermediate_activation = tf.keras.activations.get(
        intermediate_activation)
Hongkun Yu's avatar
Hongkun Yu committed
343
344
    self.dropout_rate = dropout_rate
    self.attention_dropout_rate = attention_dropout_rate
345
    self.multi_channel_cross_attention = multi_channel_cross_attention
Hongkun Yu's avatar
Hongkun Yu committed
346
347
348
349
350
351
352
    self._kernel_initializer = tf.keras.initializers.get(kernel_initializer)
    self._bias_initializer = tf.keras.initializers.get(bias_initializer)
    self._kernel_regularizer = tf.keras.regularizers.get(kernel_regularizer)
    self._bias_regularizer = tf.keras.regularizers.get(bias_regularizer)
    self._activity_regularizer = tf.keras.regularizers.get(activity_regularizer)
    self._kernel_constraint = tf.keras.constraints.get(kernel_constraint)
    self._bias_constraint = tf.keras.constraints.get(bias_constraint)
xinliupitt's avatar
xinliupitt committed
353
354
355
    self._use_bias = use_bias
    self._norm_first = norm_first
    self._norm_epsilon = norm_epsilon
xinliupitt's avatar
xinliupitt committed
356
    self._intermediate_dropout = intermediate_dropout
xinliupitt's avatar
xinliupitt committed
357
358
359
360
    if attention_initializer:
      self._attention_initializer = attention_initializer
    else:
      self._attention_initializer = self._kernel_initializer
361
362
363
364
365
    if self.multi_channel_cross_attention:
      self._cross_attention_cls = multi_channel_attention.MultiChannelAttention
    else:
      self._cross_attention_cls = attention.MultiHeadAttention

Hongkun Yu's avatar
Hongkun Yu committed
366
367
368
369
370
371
372
  def build(self, input_shape):
    target_tensor_shape = tf.TensorShape(input_shape[0])
    if len(target_tensor_shape) != 3:
      raise ValueError("TransformerLayer expects a three-dimensional input of "
                       "shape [batch, sequence, width].")
    hidden_size = target_tensor_shape[2]
    if hidden_size % self.num_attention_heads != 0:
373
374
      raise ValueError(
          "The hidden size (%d) is not a multiple of the number of attention "
Hongkun Yu's avatar
Hongkun Yu committed
375
376
          "heads (%d)" % (hidden_size, self.num_attention_heads))
    self.attention_head_size = int(hidden_size / self.num_attention_heads)
377
    common_kwargs = dict(
378
        bias_initializer=self._bias_initializer,
Hongkun Yu's avatar
Hongkun Yu committed
379
380
381
382
        kernel_regularizer=self._kernel_regularizer,
        bias_regularizer=self._bias_regularizer,
        activity_regularizer=self._activity_regularizer,
        kernel_constraint=self._kernel_constraint,
383
384
385
386
387
388
        bias_constraint=self._bias_constraint)
    # Self attention.
    self.self_attention = attention.CachedAttention(
        num_heads=self.num_attention_heads,
        key_size=self.attention_head_size,
        dropout=self.attention_dropout_rate,
xinliupitt's avatar
xinliupitt committed
389
        use_bias=self._use_bias,
xinliupitt's avatar
xinliupitt committed
390
        kernel_initializer=self._attention_initializer,
391
392
393
394
395
396
        name="self_attention",
        **common_kwargs)
    self.self_attention_output_dense = tf.keras.layers.experimental.EinsumDense(
        "abc,cd->abd",
        output_shape=(None, hidden_size),
        bias_axes="d",
xinliupitt's avatar
xinliupitt committed
397
        kernel_initializer=self._kernel_initializer,
398
399
        name="output",
        **common_kwargs)
400
    self.self_attention_dropout = tf.keras.layers.Dropout(
Hongkun Yu's avatar
Hongkun Yu committed
401
        rate=self.dropout_rate)
402
403
    self.self_attention_layer_norm = (
        tf.keras.layers.LayerNormalization(
xinliupitt's avatar
xinliupitt committed
404
            name="self_attention_layer_norm",
405
406
            axis=-1,
            epsilon=self._norm_epsilon))
407
408
409
410
    # Encoder-decoder attention.
    self.encdec_attention = self._cross_attention_cls(
        num_heads=self.num_attention_heads,
        key_size=self.attention_head_size,
Hongkun Yu's avatar
Hongkun Yu committed
411
412
        dropout=self.attention_dropout_rate,
        output_shape=hidden_size,
xinliupitt's avatar
xinliupitt committed
413
        use_bias=self._use_bias,
xinliupitt's avatar
xinliupitt committed
414
        kernel_initializer=self._attention_initializer,
415
416
        name="attention/encdec",
        **common_kwargs)
417
418

    self.encdec_attention_dropout = tf.keras.layers.Dropout(
Hongkun Yu's avatar
Hongkun Yu committed
419
        rate=self.dropout_rate)
420
421
    self.encdec_attention_layer_norm = (
        tf.keras.layers.LayerNormalization(
xinliupitt's avatar
xinliupitt committed
422
            name="attention/encdec_output_layer_norm",
423
424
            axis=-1,
            epsilon=self._norm_epsilon))
425
426

    # Feed-forward projection.
427
428
429
430
    self.intermediate_dense = tf.keras.layers.experimental.EinsumDense(
        "abc,cd->abd",
        output_shape=(None, self.intermediate_size),
        bias_axes="d",
xinliupitt's avatar
xinliupitt committed
431
        kernel_initializer=self._kernel_initializer,
432
433
        name="intermediate",
        **common_kwargs)
434
435
    self.intermediate_activation_layer = tf.keras.layers.Activation(
        self.intermediate_activation)
436
437
    self._intermediate_dropout_layer = tf.keras.layers.Dropout(
        rate=self._intermediate_dropout)
438
439
440
441
    self.output_dense = tf.keras.layers.experimental.EinsumDense(
        "abc,cd->abd",
        output_shape=(None, hidden_size),
        bias_axes="d",
xinliupitt's avatar
xinliupitt committed
442
        kernel_initializer=self._kernel_initializer,
443
444
        name="output",
        **common_kwargs)
Hongkun Yu's avatar
Hongkun Yu committed
445
    self.output_dropout = tf.keras.layers.Dropout(rate=self.dropout_rate)
446
    self.output_layer_norm = tf.keras.layers.LayerNormalization(
xinliupitt's avatar
xinliupitt committed
447
        name="output_layer_norm", axis=-1, epsilon=self._norm_epsilon)
448
449
    super(TransformerDecoderLayer, self).build(input_shape)

xinliupitt's avatar
xinliupitt committed
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
  def get_config(self):
    config = {
        "num_attention_heads":
            self.num_attention_heads,
        "intermediate_size":
            self.intermediate_size,
        "intermediate_activation":
            self.intermediate_activation,
        "dropout_rate":
            self.dropout_rate,
        "attention_dropout_rate":
            self.attention_dropout_rate,
        "multi_channel_cross_attention":
            self.multi_channel_cross_attention,
        "kernel_initializer":
            tf.keras.initializers.serialize(self._kernel_initializer),
        "bias_initializer":
            tf.keras.initializers.serialize(self._bias_initializer),
        "kernel_regularizer":
            tf.keras.regularizers.serialize(self._kernel_regularizer),
        "bias_regularizer":
            tf.keras.regularizers.serialize(self._bias_regularizer),
        "activity_regularizer":
            tf.keras.regularizers.serialize(self._activity_regularizer),
        "kernel_constraint":
            tf.keras.constraints.serialize(self._kernel_constraint),
        "bias_constraint":
            tf.keras.constraints.serialize(self._bias_constraint),
        "use_bias":
            self._use_bias,
        "norm_first":
            self._norm_first,
        "norm_epsilon":
xinliupitt's avatar
xinliupitt committed
483
484
            self._norm_epsilon,
        "intermediate_dropout":
xinliupitt's avatar
xinliupitt committed
485
486
487
            self._intermediate_dropout,
        "attention_initializer":
            self._attention_initializer
xinliupitt's avatar
xinliupitt committed
488
489
490
491
    }
    base_config = super(TransformerDecoderLayer, self).get_config()
    return dict(list(base_config.items()) + list(config.items()))

492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
  def common_layers_with_encoder(self):
    """Gets layer objects that can make a Transformer encoder block."""
    return [
        self.self_attention, self.self_attention_layer_norm,
        self.intermediate_dense, self.output_dense, self.output_layer_norm
    ]

  def call(self, inputs, cache=None, decode_loop_step=None):
    if self.multi_channel_cross_attention:
      if len(inputs) != 5:
        raise ValueError(
            "TransformerDecoderLayer must have 5 inputs, when it uses "
            "multi_channel_cross_attention. But it got: %d" % len(inputs))
    elif len(inputs) != 4:
      raise ValueError(
          "TransformerDecoderLayer must have 4 inputs, but it got: %d" %
          len(inputs))
    input_tensor, memory, attention_mask, self_attention_mask = inputs[:4]
xinliupitt's avatar
xinliupitt committed
510
511
512
    source_tensor = input_tensor
    if self._norm_first:
      input_tensor = self.self_attention_layer_norm(input_tensor)
513
    self_attention_output, cache = self.self_attention(
514
515
        query=input_tensor,
        value=input_tensor,
516
517
518
519
        attention_mask=self_attention_mask,
        cache=cache,
        decode_loop_step=decode_loop_step)
    self_attention_output = self.self_attention_dropout(self_attention_output)
xinliupitt's avatar
xinliupitt committed
520
521
522
523
524
525
526
527
528
    if self._norm_first:
      self_attention_output = source_tensor + self_attention_output
    else:
      self_attention_output = self.self_attention_layer_norm(
          input_tensor + self_attention_output)
    if self._norm_first:
      source_self_attention_output = self_attention_output
      self_attention_output = self.encdec_attention_layer_norm(
          self_attention_output)
529
530
531
532
    cross_attn_inputs = dict(
        query=self_attention_output,
        value=memory,
        attention_mask=attention_mask)
533
534
    if self.multi_channel_cross_attention:
      # Accesses the 5-th input tensor for the doc-attention probabilities.
535
536
      cross_attn_inputs["context_attention_weights"] = inputs[-1]
    attention_output = self.encdec_attention(**cross_attn_inputs)
537
    attention_output = self.encdec_attention_dropout(attention_output)
xinliupitt's avatar
xinliupitt committed
538
539
540
541
    if self._norm_first:
      attention_output = source_self_attention_output + attention_output
    else:
      attention_output = self.encdec_attention_layer_norm(
542
          self_attention_output + attention_output)
xinliupitt's avatar
xinliupitt committed
543
544
545
    if self._norm_first:
      source_attention_output = attention_output
      attention_output = self.output_layer_norm(attention_output)
546
547
548
549

    intermediate_output = self.intermediate_dense(attention_output)
    intermediate_output = self.intermediate_activation_layer(
        intermediate_output)
550
    intermediate_output = self._intermediate_dropout_layer(intermediate_output)
551
552
    layer_output = self.output_dense(intermediate_output)
    layer_output = self.output_dropout(layer_output)
xinliupitt's avatar
xinliupitt committed
553
554
555
556
    if self._norm_first:
      layer_output = source_attention_output + layer_output
    else:
      layer_output = self.output_layer_norm(layer_output + attention_output)
557
    return layer_output, cache