transformer.py 19.9 KB
Newer Older
Hongkun Yu's avatar
Hongkun Yu committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Keras-based transformer block layer."""
16
# pylint: disable=g-classes-have-attributes
Hongkun Yu's avatar
Hongkun Yu committed
17
18
19
20
21
from __future__ import absolute_import
from __future__ import division
# from __future__ import google_type_annotations
from __future__ import print_function

Chen Chen's avatar
Chen Chen committed
22
import gin
Hongkun Yu's avatar
Hongkun Yu committed
23
24
25
import tensorflow as tf

from official.nlp.modeling.layers import attention
26
from official.nlp.modeling.layers import multi_channel_attention
27
from official.nlp.modeling.layers.util import tf_function_if_eager
Hongkun Yu's avatar
Hongkun Yu committed
28
29
30
31
32
33
34
35
36


@tf.keras.utils.register_keras_serializable(package="Text")
class Transformer(tf.keras.layers.Layer):
  """Transformer layer.

  This layer implements the Transformer from "Attention Is All You Need".
  (https://arxiv.org/abs/1706.03762).

37
  Arguments:
Hongkun Yu's avatar
Hongkun Yu committed
38
39
40
41
42
    num_attention_heads: Number of attention heads.
    intermediate_size: Size of the intermediate layer.
    intermediate_activation: Activation for the intermediate layer.
    dropout_rate: Dropout probability for the post-attention and output dropout.
    attention_dropout_rate: Dropout probability for within the attention layer.
43
44
    output_range: the sequence output range, [0, output_range) by slicing the
      target sequence. `None` means the target sequence is not sliced.
Hongkun Yu's avatar
Hongkun Yu committed
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
    kernel_initializer: Initializer for dense layer kernels.
    bias_initializer: Initializer for dense layer biases.
    kernel_regularizer: Regularizer for dense layer kernels.
    bias_regularizer: Regularizer for dense layer biases.
    activity_regularizer: Regularizer for dense layer activity.
    kernel_constraint: Constraint for dense layer kernels.
    bias_constraint: Constraint for dense layer kernels.
  """

  def __init__(self,
               num_attention_heads,
               intermediate_size,
               intermediate_activation,
               dropout_rate=0.0,
               attention_dropout_rate=0.0,
60
               output_range=None,
Hongkun Yu's avatar
Hongkun Yu committed
61
62
63
64
65
66
67
               kernel_initializer="glorot_uniform",
               bias_initializer="zeros",
               kernel_regularizer=None,
               bias_regularizer=None,
               activity_regularizer=None,
               kernel_constraint=None,
               bias_constraint=None,
xinliupitt's avatar
xinliupitt committed
68
69
70
               use_bias=True,
               norm_first=False,
               norm_epsilon=1e-12,
Hongkun Yu's avatar
Hongkun Yu committed
71
72
73
74
75
76
77
78
               **kwargs):
    super(Transformer, self).__init__(**kwargs)

    self._num_heads = num_attention_heads
    self._intermediate_size = intermediate_size
    self._intermediate_activation = intermediate_activation
    self._attention_dropout_rate = attention_dropout_rate
    self._dropout_rate = dropout_rate
79
    self._output_range = output_range
Hongkun Yu's avatar
Hongkun Yu committed
80
81
82
83
    self._kernel_initializer = tf.keras.initializers.get(kernel_initializer)
    self._bias_initializer = tf.keras.initializers.get(bias_initializer)
    self._kernel_regularizer = tf.keras.regularizers.get(kernel_regularizer)
    self._bias_regularizer = tf.keras.regularizers.get(bias_regularizer)
Hongkun Yu's avatar
Hongkun Yu committed
84
    self._activity_regularizer = tf.keras.regularizers.get(activity_regularizer)
Hongkun Yu's avatar
Hongkun Yu committed
85
86
    self._kernel_constraint = tf.keras.constraints.get(kernel_constraint)
    self._bias_constraint = tf.keras.constraints.get(bias_constraint)
xinliupitt's avatar
xinliupitt committed
87
88
89
    self._use_bias = use_bias
    self._norm_first = norm_first
    self._norm_epsilon = norm_epsilon
Hongkun Yu's avatar
Hongkun Yu committed
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113

  def build(self, input_shape):
    input_tensor = input_shape[0] if len(input_shape) == 2 else input_shape
    input_tensor_shape = tf.TensorShape(input_tensor)
    if len(input_tensor_shape) != 3:
      raise ValueError("TransformerLayer expects a three-dimensional input of "
                       "shape [batch, sequence, width].")
    batch_size, sequence_length, hidden_size = input_tensor_shape

    if len(input_shape) == 2:
      mask_tensor_shape = tf.TensorShape(input_shape[1])
      expected_mask_tensor_shape = tf.TensorShape(
          [batch_size, sequence_length, sequence_length])
      if not expected_mask_tensor_shape.is_compatible_with(mask_tensor_shape):
        raise ValueError("When passing a mask tensor to TransformerLayer, the "
                         "mask tensor must be of shape [batch, "
                         "sequence_length, sequence_length] (here %s). Got a "
                         "mask tensor of shape %s." %
                         (expected_mask_tensor_shape, mask_tensor_shape))
    if hidden_size % self._num_heads != 0:
      raise ValueError(
          "The input size (%d) is not a multiple of the number of attention "
          "heads (%d)" % (hidden_size, self._num_heads))
    self._attention_head_size = int(hidden_size // self._num_heads)
114
    common_kwargs = dict(
Hongkun Yu's avatar
Hongkun Yu committed
115
116
117
118
119
120
        kernel_initializer=self._kernel_initializer,
        bias_initializer=self._bias_initializer,
        kernel_regularizer=self._kernel_regularizer,
        bias_regularizer=self._bias_regularizer,
        activity_regularizer=self._activity_regularizer,
        kernel_constraint=self._kernel_constraint,
121
122
123
124
125
        bias_constraint=self._bias_constraint)
    self._attention_layer = attention.MultiHeadAttention(
        num_heads=self._num_heads,
        key_size=self._attention_head_size,
        dropout=self._attention_dropout_rate,
xinliupitt's avatar
xinliupitt committed
126
        use_bias=self._use_bias,
127
128
        name="self_attention",
        **common_kwargs)
129
    # pylint: disable=protected-access
130
131
132
    # Temporarily handling for checkpoint compatible changes.
    self._attention_layer._build_from_signature(
        query=input_tensor_shape, value=input_tensor_shape)
133
134
    self._attention_output_dense = self._attention_layer._output_dense
    # pylint: enable=protected-access
Hongkun Yu's avatar
Hongkun Yu committed
135
    self._attention_dropout = tf.keras.layers.Dropout(rate=self._dropout_rate)
Zongwei Zhou's avatar
Zongwei Zhou committed
136
137
    # Use float32 in layernorm for numeric stability.
    # It is probably safe in mixed_float16, but we haven't validated this yet.
Hongkun Yu's avatar
Hongkun Yu committed
138
139
    self._attention_layer_norm = (
        tf.keras.layers.LayerNormalization(
Chen Chen's avatar
Chen Chen committed
140
141
            name="self_attention_layer_norm",
            axis=-1,
xinliupitt's avatar
xinliupitt committed
142
            epsilon=self._norm_epsilon,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
143
            dtype=tf.float32))
144
145
146
147
148
149
    self._intermediate_dense = tf.keras.layers.experimental.EinsumDense(
        "abc,cd->abd",
        output_shape=(None, self._intermediate_size),
        bias_axes="d",
        name="intermediate",
        **common_kwargs)
150
151
152
153
154
155
    policy = tf.keras.mixed_precision.experimental.global_policy()
    if policy.name == "mixed_bfloat16":
      # bfloat16 causes BERT with the LAMB optimizer to not converge
      # as well, so we use float32.
      # TODO(b/154538392): Investigate this.
      policy = tf.float32
Chen Chen's avatar
Chen Chen committed
156
    self._intermediate_activation_layer = tf.keras.layers.Activation(
157
        self._intermediate_activation, dtype=policy)
158
159
160
161
162
163
    self._output_dense = tf.keras.layers.experimental.EinsumDense(
        "abc,cd->abd",
        output_shape=(None, hidden_size),
        bias_axes="d",
        name="output",
        **common_kwargs)
Hongkun Yu's avatar
Hongkun Yu committed
164
    self._output_dropout = tf.keras.layers.Dropout(rate=self._dropout_rate)
Zongwei Zhou's avatar
Zongwei Zhou committed
165
    # Use float32 in layernorm for numeric stability.
Hongkun Yu's avatar
Hongkun Yu committed
166
    self._output_layer_norm = tf.keras.layers.LayerNormalization(
xinliupitt's avatar
xinliupitt committed
167
168
        name="output_layer_norm", axis=-1, epsilon=self._norm_epsilon,
        dtype=tf.float32)
Hongkun Yu's avatar
Hongkun Yu committed
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183

    super(Transformer, self).build(input_shape)

  def get_config(self):
    config = {
        "num_attention_heads":
            self._num_heads,
        "intermediate_size":
            self._intermediate_size,
        "intermediate_activation":
            self._intermediate_activation,
        "dropout_rate":
            self._dropout_rate,
        "attention_dropout_rate":
            self._attention_dropout_rate,
184
185
        "output_range":
            self._output_range,
Hongkun Yu's avatar
Hongkun Yu committed
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
        "kernel_initializer":
            tf.keras.initializers.serialize(self._kernel_initializer),
        "bias_initializer":
            tf.keras.initializers.serialize(self._bias_initializer),
        "kernel_regularizer":
            tf.keras.regularizers.serialize(self._kernel_regularizer),
        "bias_regularizer":
            tf.keras.regularizers.serialize(self._bias_regularizer),
        "activity_regularizer":
            tf.keras.regularizers.serialize(self._activity_regularizer),
        "kernel_constraint":
            tf.keras.constraints.serialize(self._kernel_constraint),
        "bias_constraint":
            tf.keras.constraints.serialize(self._bias_constraint)
    }
    base_config = super(Transformer, self).get_config()
    return dict(list(base_config.items()) + list(config.items()))

  def call(self, inputs):
    if isinstance(inputs, (list, tuple)) and len(inputs) == 2:
      input_tensor, attention_mask = inputs
    else:
      input_tensor, attention_mask = (inputs, None)

210
211
212
213
    if self._output_range:
      target_tensor = input_tensor[:, 0:self._output_range, :]
      attention_mask = attention_mask[:, 0:self._output_range, :]
    else:
xinliupitt's avatar
xinliupitt committed
214
215
216
      if self._norm_first:
        source_tensor = input_tensor
        input_tensor = self._attention_layer_norm(input_tensor)
217
      target_tensor = input_tensor
Hongkun Yu's avatar
Hongkun Yu committed
218

219
220
    attention_output = self._attention_layer(
        query=target_tensor, value=input_tensor, attention_mask=attention_mask)
221
    attention_output = self._attention_dropout(attention_output)
xinliupitt's avatar
xinliupitt committed
222
223
224
225
226
227
228
229
    if self._norm_first:
      attention_output = source_tensor + attention_output
    else:
      attention_output = self._attention_layer_norm(target_tensor +
                                                    attention_output)
    if self._norm_first:
      source_attention_output = attention_output
      attention_output = self._output_layer_norm(attention_output)
230
231
232
233
234
235
236
237
238
    intermediate_output = self._intermediate_dense(attention_output)
    intermediate_output = self._intermediate_activation_layer(
        intermediate_output)
    layer_output = self._output_dense(intermediate_output)
    layer_output = self._output_dropout(layer_output)
    # During mixed precision training, attention_output is from layer norm and
    # is always fp32 for now. Cast layer_output to fp32 for the subsequent
    # add.
    layer_output = tf.cast(layer_output, tf.float32)
xinliupitt's avatar
xinliupitt committed
239
240
241
242
    if self._norm_first:
      layer_output = source_attention_output + layer_output
    else:
      layer_output = self._output_layer_norm(layer_output + attention_output)
243
244

    return layer_output
245
246


Chen Chen's avatar
Chen Chen committed
247
248
@tf.keras.utils.register_keras_serializable(package="Text")
@gin.configurable
249
250
251
252
253
class CompiledTransformer(Transformer):

  @tf_function_if_eager(experimental_compile=True)
  def call(self, inputs):
    return super(CompiledTransformer, self).call(inputs)
254
255
256
257
258
259
260
261
262
263


@tf.keras.utils.register_keras_serializable(package="Text")
class TransformerDecoderLayer(tf.keras.layers.Layer):
  """Single transformer layer for decoder.

  It has three sub-layers:
  (1) a multi-head self-attention mechanism.
  (2) a encoder-decoder attention.
  (3) a positionwise fully connected feed-forward network.
Hongkun Yu's avatar
Hongkun Yu committed
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279

  Arguments:
    num_attention_heads: Number of attention heads.
    intermediate_size: Size of the intermediate layer.
    intermediate_activation: Activation for the intermediate layer.
    dropout_rate: Dropout probability for the post-attention and output dropout.
    attention_dropout_rate: Dropout probability for within the attention layer.
    multi_channel_cross_attention: Whether to use `MultiChannelAttention` for
      cross-attention between target sequences and source sequences.
    kernel_initializer: Initializer for dense layer kernels.
    bias_initializer: Initializer for dense layer biases.
    kernel_regularizer: Regularizer for dense layer kernels.
    bias_regularizer: Regularizer for dense layer biases.
    activity_regularizer: Regularizer for dense layer activity.
    kernel_constraint: Constraint for dense layer kernels.
    bias_constraint: Constraint for dense layer kernels.
280
281
282
  """

  def __init__(self,
Hongkun Yu's avatar
Hongkun Yu committed
283
284
285
286
287
               num_attention_heads,
               intermediate_size,
               intermediate_activation,
               dropout_rate=0.0,
               attention_dropout_rate=0.0,
288
               multi_channel_cross_attention=False,
Hongkun Yu's avatar
Hongkun Yu committed
289
290
291
292
293
294
295
               kernel_initializer="glorot_uniform",
               bias_initializer="zeros",
               kernel_regularizer=None,
               bias_regularizer=None,
               activity_regularizer=None,
               kernel_constraint=None,
               bias_constraint=None,
xinliupitt's avatar
xinliupitt committed
296
297
298
               use_bias=True,
               norm_first=False,
               norm_epsilon=1e-12,
299
300
301
302
303
304
               **kwargs):
    super(TransformerDecoderLayer, self).__init__(**kwargs)
    self.num_attention_heads = num_attention_heads
    self.intermediate_size = intermediate_size
    self.intermediate_activation = tf.keras.activations.get(
        intermediate_activation)
Hongkun Yu's avatar
Hongkun Yu committed
305
306
    self.dropout_rate = dropout_rate
    self.attention_dropout_rate = attention_dropout_rate
307
    self.multi_channel_cross_attention = multi_channel_cross_attention
Hongkun Yu's avatar
Hongkun Yu committed
308
309
310
311
312
313
314
    self._kernel_initializer = tf.keras.initializers.get(kernel_initializer)
    self._bias_initializer = tf.keras.initializers.get(bias_initializer)
    self._kernel_regularizer = tf.keras.regularizers.get(kernel_regularizer)
    self._bias_regularizer = tf.keras.regularizers.get(bias_regularizer)
    self._activity_regularizer = tf.keras.regularizers.get(activity_regularizer)
    self._kernel_constraint = tf.keras.constraints.get(kernel_constraint)
    self._bias_constraint = tf.keras.constraints.get(bias_constraint)
xinliupitt's avatar
xinliupitt committed
315
316
317
    self._use_bias = use_bias
    self._norm_first = norm_first
    self._norm_epsilon = norm_epsilon
318
319
320
321
322
    if self.multi_channel_cross_attention:
      self._cross_attention_cls = multi_channel_attention.MultiChannelAttention
    else:
      self._cross_attention_cls = attention.MultiHeadAttention

Hongkun Yu's avatar
Hongkun Yu committed
323
324
325
326
327
328
329
  def build(self, input_shape):
    target_tensor_shape = tf.TensorShape(input_shape[0])
    if len(target_tensor_shape) != 3:
      raise ValueError("TransformerLayer expects a three-dimensional input of "
                       "shape [batch, sequence, width].")
    hidden_size = target_tensor_shape[2]
    if hidden_size % self.num_attention_heads != 0:
330
331
      raise ValueError(
          "The hidden size (%d) is not a multiple of the number of attention "
Hongkun Yu's avatar
Hongkun Yu committed
332
333
          "heads (%d)" % (hidden_size, self.num_attention_heads))
    self.attention_head_size = int(hidden_size / self.num_attention_heads)
334
    common_kwargs = dict(
335
336
        kernel_initializer=self._kernel_initializer,
        bias_initializer=self._bias_initializer,
Hongkun Yu's avatar
Hongkun Yu committed
337
338
339
340
        kernel_regularizer=self._kernel_regularizer,
        bias_regularizer=self._bias_regularizer,
        activity_regularizer=self._activity_regularizer,
        kernel_constraint=self._kernel_constraint,
341
342
343
344
345
346
        bias_constraint=self._bias_constraint)
    # Self attention.
    self.self_attention = attention.CachedAttention(
        num_heads=self.num_attention_heads,
        key_size=self.attention_head_size,
        dropout=self.attention_dropout_rate,
xinliupitt's avatar
xinliupitt committed
347
        use_bias=self._use_bias,
348
349
350
351
352
353
354
355
        name="self_attention",
        **common_kwargs)
    self.self_attention_output_dense = tf.keras.layers.experimental.EinsumDense(
        "abc,cd->abd",
        output_shape=(None, hidden_size),
        bias_axes="d",
        name="output",
        **common_kwargs)
356
    self.self_attention_dropout = tf.keras.layers.Dropout(
Hongkun Yu's avatar
Hongkun Yu committed
357
        rate=self.dropout_rate)
358
359
    self.self_attention_layer_norm = (
        tf.keras.layers.LayerNormalization(
xinliupitt's avatar
xinliupitt committed
360
361
            name="self_attention_layer_norm",
            axis=-1, epsilon=self._norm_epsilon))
362
363
364
365
    # Encoder-decoder attention.
    self.encdec_attention = self._cross_attention_cls(
        num_heads=self.num_attention_heads,
        key_size=self.attention_head_size,
Hongkun Yu's avatar
Hongkun Yu committed
366
367
        dropout=self.attention_dropout_rate,
        output_shape=hidden_size,
xinliupitt's avatar
xinliupitt committed
368
        use_bias=self._use_bias,
369
370
        name="attention/encdec",
        **common_kwargs)
371
372

    self.encdec_attention_dropout = tf.keras.layers.Dropout(
Hongkun Yu's avatar
Hongkun Yu committed
373
        rate=self.dropout_rate)
374
375
    self.encdec_attention_layer_norm = (
        tf.keras.layers.LayerNormalization(
xinliupitt's avatar
xinliupitt committed
376
377
            name="attention/encdec_output_layer_norm",
            axis=-1, epsilon=self._norm_epsilon))
378
379

    # Feed-forward projection.
380
381
382
383
384
385
    self.intermediate_dense = tf.keras.layers.experimental.EinsumDense(
        "abc,cd->abd",
        output_shape=(None, self.intermediate_size),
        bias_axes="d",
        name="intermediate",
        **common_kwargs)
386
387
    self.intermediate_activation_layer = tf.keras.layers.Activation(
        self.intermediate_activation)
388
389
390
391
392
393
    self.output_dense = tf.keras.layers.experimental.EinsumDense(
        "abc,cd->abd",
        output_shape=(None, hidden_size),
        bias_axes="d",
        name="output",
        **common_kwargs)
Hongkun Yu's avatar
Hongkun Yu committed
394
    self.output_dropout = tf.keras.layers.Dropout(rate=self.dropout_rate)
395
    self.output_layer_norm = tf.keras.layers.LayerNormalization(
xinliupitt's avatar
xinliupitt committed
396
        name="output_layer_norm", axis=-1, epsilon=self._norm_epsilon)
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
    super(TransformerDecoderLayer, self).build(input_shape)

  def common_layers_with_encoder(self):
    """Gets layer objects that can make a Transformer encoder block."""
    return [
        self.self_attention, self.self_attention_layer_norm,
        self.intermediate_dense, self.output_dense, self.output_layer_norm
    ]

  def call(self, inputs, cache=None, decode_loop_step=None):
    if self.multi_channel_cross_attention:
      if len(inputs) != 5:
        raise ValueError(
            "TransformerDecoderLayer must have 5 inputs, when it uses "
            "multi_channel_cross_attention. But it got: %d" % len(inputs))
    elif len(inputs) != 4:
      raise ValueError(
          "TransformerDecoderLayer must have 4 inputs, but it got: %d" %
          len(inputs))
    input_tensor, memory, attention_mask, self_attention_mask = inputs[:4]
xinliupitt's avatar
xinliupitt committed
417
418
419
    source_tensor = input_tensor
    if self._norm_first:
      input_tensor = self.self_attention_layer_norm(input_tensor)
420
    self_attention_output, cache = self.self_attention(
421
422
        query=input_tensor,
        value=input_tensor,
423
424
425
426
        attention_mask=self_attention_mask,
        cache=cache,
        decode_loop_step=decode_loop_step)
    self_attention_output = self.self_attention_dropout(self_attention_output)
xinliupitt's avatar
xinliupitt committed
427
428
429
430
431
432
433
434
435
    if self._norm_first:
      self_attention_output = source_tensor + self_attention_output
    else:
      self_attention_output = self.self_attention_layer_norm(
          input_tensor + self_attention_output)
    if self._norm_first:
      source_self_attention_output = self_attention_output
      self_attention_output = self.encdec_attention_layer_norm(
          self_attention_output)
436
437
438
439
    cross_attn_inputs = dict(
        query=self_attention_output,
        value=memory,
        attention_mask=attention_mask)
440
441
    if self.multi_channel_cross_attention:
      # Accesses the 5-th input tensor for the doc-attention probabilities.
442
443
      cross_attn_inputs["context_attention_weights"] = inputs[-1]
    attention_output = self.encdec_attention(**cross_attn_inputs)
444
    attention_output = self.encdec_attention_dropout(attention_output)
xinliupitt's avatar
xinliupitt committed
445
446
447
448
449
450
451
452
453
    if self._norm_first:
      attention_output = source_self_attention_output + attention_output
    else:
      attention_output = self.encdec_attention_layer_norm(
          self_attention_output +
          attention_output)
    if self._norm_first:
      source_attention_output = attention_output
      attention_output = self.output_layer_norm(attention_output)
454
455
456
457
458
459

    intermediate_output = self.intermediate_dense(attention_output)
    intermediate_output = self.intermediate_activation_layer(
        intermediate_output)
    layer_output = self.output_dense(intermediate_output)
    layer_output = self.output_dropout(layer_output)
xinliupitt's avatar
xinliupitt committed
460
461
462
463
    if self._norm_first:
      layer_output = source_attention_output + layer_output
    else:
      layer_output = self.output_layer_norm(layer_output + attention_output)
464
    return layer_output, cache