bert_squad_benchmark.py 21.3 KB
Newer Older
davidmochen's avatar
davidmochen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Executes BERT SQuAD benchmarks and accuracy tests."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import json
import os
import time

# pylint: disable=g-bad-import-order
Hongkun Yu's avatar
Hongkun Yu committed
26

davidmochen's avatar
davidmochen committed
27
from absl import flags
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
28
from absl import logging
davidmochen's avatar
davidmochen committed
29
from absl.testing import flagsaver
30
import tensorflow as tf
davidmochen's avatar
davidmochen committed
31
32
# pylint: enable=g-bad-import-order

33
from official.benchmark import bert_benchmark_utils as benchmark_utils
Jing Li's avatar
Jing Li committed
34
from official.benchmark import owner_utils
35
from official.nlp.bert import run_squad
davidmochen's avatar
davidmochen committed
36
from official.utils.misc import distribution_utils
37
from official.utils.misc import keras_utils
38
from official.benchmark import benchmark_wrappers
39

davidmochen's avatar
davidmochen committed
40
41

# pylint: disable=line-too-long
David Chen's avatar
David Chen committed
42
PRETRAINED_CHECKPOINT_PATH = 'gs://cloud-tpu-checkpoints/bert/keras_bert/uncased_L-24_H-1024_A-16/bert_model.ckpt'
davidmochen's avatar
davidmochen committed
43
44
SQUAD_TRAIN_DATA_PATH = 'gs://tf-perfzero-data/bert/squad/squad_train.tf_record'
SQUAD_PREDICT_FILE = 'gs://tf-perfzero-data/bert/squad/dev-v1.1.json'
David Chen's avatar
David Chen committed
45
SQUAD_VOCAB_FILE = 'gs://tf-perfzero-data/bert/squad/vocab.txt'
David Chen's avatar
David Chen committed
46
SQUAD_MEDIUM_INPUT_META_DATA_PATH = 'gs://tf-perfzero-data/bert/squad/squad_medium_meta_data'
Zongwei Zhou's avatar
Zongwei Zhou committed
47
SQUAD_LONG_INPUT_META_DATA_PATH = 'gs://tf-perfzero-data/bert/squad/squad_long_meta_data'
48
SQUAD_FULL_INPUT_META_DATA_PATH = 'gs://tf-perfzero-data/bert/squad/squad_full_meta_data'
David Chen's avatar
David Chen committed
49
MODEL_CONFIG_FILE_PATH = 'gs://cloud-tpu-checkpoints/bert/keras_bert/uncased_L-24_H-1024_A-16/bert_config.json'
davidmochen's avatar
davidmochen committed
50
51
# pylint: enable=line-too-long

David Chen's avatar
David Chen committed
52
TMP_DIR = os.getenv('TMPDIR')
davidmochen's avatar
davidmochen committed
53
54
55
56
57
58
FLAGS = flags.FLAGS


class BertSquadBenchmarkBase(benchmark_utils.BertBenchmarkBase):
  """Base class to hold methods common to test classes in the module."""

Zongwei Zhou's avatar
Zongwei Zhou committed
59
60
61
  def __init__(self, output_dir=None, tpu=None, **kwargs):
    super(BertSquadBenchmarkBase, self).__init__(
        output_dir=output_dir, tpu=tpu, **kwargs)
David Chen's avatar
David Chen committed
62

63
64
  def _read_training_summary_from_file(self):
    """Reads the training summary from a file."""
65
66
    summary_path = os.path.join(FLAGS.model_dir,
                                'summaries/training_summary.txt')
67
68
    with tf.io.gfile.GFile(summary_path, 'rb') as reader:
      return json.loads(reader.read().decode('utf-8'))
69

70
71
72
73
  def _read_input_meta_data_from_file(self):
    """Reads the input metadata from a file."""
    with tf.io.gfile.GFile(FLAGS.input_meta_data_path, 'rb') as reader:
      return json.loads(reader.read().decode('utf-8'))
74

75
76
77
78
79
  def _get_distribution_strategy(self, ds_type='mirrored'):
    """Gets the distribution strategy.

    Args:
      ds_type: String, the distribution strategy type to be used. Can be
Hongkun Yu's avatar
Hongkun Yu committed
80
        'mirrored', 'multi_worker_mirrored', 'tpu' and 'off'.
81
82
83
84

    Returns:
      A `tf.distribute.DistibutionStrategy` object.
    """
Sai Ganesh Bandiatmakuri's avatar
Sai Ganesh Bandiatmakuri committed
85
    if self.tpu or ds_type == 'tpu':
David Chen's avatar
David Chen committed
86
      return distribution_utils.get_distribution_strategy(
Sai Ganesh Bandiatmakuri's avatar
Sai Ganesh Bandiatmakuri committed
87
          distribution_strategy='tpu', tpu_address=self.tpu)
88
89
90
91
92
93
94
95
    elif ds_type == 'multi_worker_mirrored':
      # Configures cluster spec for multi-worker distribution strategy.
      _ = distribution_utils.configure_cluster(FLAGS.worker_hosts,
                                               FLAGS.task_index)
    return distribution_utils.get_distribution_strategy(
        distribution_strategy=ds_type,
        num_gpus=self.num_gpus,
        all_reduce_alg=FLAGS.all_reduce_alg)
96

97
98
99
100
101
102
103
104
105
  def _init_gpu_and_data_threads(self):
    """Set env variables before any TF calls."""
    if FLAGS.tf_gpu_thread_mode:
      keras_utils.set_gpu_thread_mode_and_count(
          per_gpu_thread_count=FLAGS.per_gpu_thread_count,
          gpu_thread_mode=FLAGS.tf_gpu_thread_mode,
          num_gpus=self.num_gpus,
          datasets_num_private_threads=FLAGS.datasets_num_private_threads)

davidmochen's avatar
davidmochen committed
106
  @flagsaver.flagsaver
107
108
  def _train_squad(self, run_eagerly=False, ds_type='mirrored'):
    """Runs BERT SQuAD training. Uses mirrored strategy by default."""
109
    self._init_gpu_and_data_threads()
110
    input_meta_data = self._read_input_meta_data_from_file()
111
    strategy = self._get_distribution_strategy(ds_type)
davidmochen's avatar
davidmochen committed
112
113
114
115

    run_squad.train_squad(
        strategy=strategy,
        input_meta_data=input_meta_data,
116
        run_eagerly=run_eagerly,
davidmochen's avatar
davidmochen committed
117
        custom_callbacks=[self.timer_callback])
118
119

  @flagsaver.flagsaver
120
121
  def _evaluate_squad(self, ds_type='mirrored'):
    """Runs BERT SQuAD evaluation. Uses mirrored strategy by default."""
122
    self._init_gpu_and_data_threads()
123
    input_meta_data = self._read_input_meta_data_from_file()
124
    strategy = self._get_distribution_strategy(ds_type)
125

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
126
127
    if input_meta_data.get('version_2_with_negative', False):
      logging.error('In memory evaluation result for SQuAD v2 is not accurate')
Hongkun Yu's avatar
Hongkun Yu committed
128
129
    eval_metrics = run_squad.eval_squad(
        strategy=strategy, input_meta_data=input_meta_data)
130
    # Use F1 score as reported evaluation metric.
Hongkun Yu's avatar
Hongkun Yu committed
131
    self.eval_metrics = eval_metrics['final_f1']
davidmochen's avatar
davidmochen committed
132
133


134
class BertSquadBenchmarkReal(BertSquadBenchmarkBase):
davidmochen's avatar
davidmochen committed
135
136
137
138
  """Short benchmark performance tests for BERT SQuAD model.

  Tests BERT SQuAD performance in different GPU configurations.
  The naming convention of below test cases follow
David Chen's avatar
David Chen committed
139
140
  `benchmark_(number of gpus)_gpu` format for GPUs and
  `benchmark_(topology)_tpu` format for TPUs.
davidmochen's avatar
davidmochen committed
141
142
  """

David Chen's avatar
David Chen committed
143
  def __init__(self, output_dir=TMP_DIR, tpu=None, **kwargs):
Zongwei Zhou's avatar
Zongwei Zhou committed
144
145
    super(BertSquadBenchmarkReal, self).__init__(
        output_dir=output_dir, tpu=tpu, **kwargs)
davidmochen's avatar
davidmochen committed
146
147

  def _setup(self):
148
149
    """Sets up the benchmark and SQuAD flags."""
    super(BertSquadBenchmarkReal, self)._setup()
davidmochen's avatar
davidmochen committed
150
151
152
153
154
    FLAGS.train_data_path = SQUAD_TRAIN_DATA_PATH
    FLAGS.predict_file = SQUAD_PREDICT_FILE
    FLAGS.vocab_file = SQUAD_VOCAB_FILE
    FLAGS.bert_config_file = MODEL_CONFIG_FILE_PATH
    FLAGS.num_train_epochs = 1
155
    FLAGS.steps_per_loop = 100
davidmochen's avatar
davidmochen committed
156

157
  @benchmark_wrappers.enable_runtime_flags
Hongkun Yu's avatar
Hongkun Yu committed
158
  def _run_and_report_benchmark(self, run_eagerly=False, ds_type='mirrored'):
159
    """Runs the benchmark and reports various metrics."""
160
    if FLAGS.train_batch_size <= 4 or run_eagerly:
161
162
163
      FLAGS.input_meta_data_path = SQUAD_MEDIUM_INPUT_META_DATA_PATH
    else:
      FLAGS.input_meta_data_path = SQUAD_LONG_INPUT_META_DATA_PATH
164
    start_time_sec = time.time()
165
    self._train_squad(run_eagerly=run_eagerly, ds_type=ds_type)
166
167
168
    wall_time_sec = time.time() - start_time_sec

    summary = self._read_training_summary_from_file()
David Chen's avatar
David Chen committed
169
    summary['start_time_sec'] = start_time_sec
170
171
172
173
174
175

    super(BertSquadBenchmarkReal, self)._report_benchmark(
        stats=summary,
        wall_time_sec=wall_time_sec,
        min_accuracy=0,
        max_accuracy=1)
davidmochen's avatar
davidmochen committed
176
177

  def benchmark_1_gpu(self):
178
    """Tests BERT SQuAD model performance with 1 GPU."""
davidmochen's avatar
davidmochen committed
179
180
181
182

    self._setup()
    self.num_gpus = 1
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_squad')
183
    FLAGS.train_batch_size = 4
davidmochen's avatar
davidmochen committed
184

185
    self._run_and_report_benchmark()
davidmochen's avatar
davidmochen committed
186

187
188
189
190
191
192
193
194
  def benchmark_1_gpu_eager(self):
    """Tests BERT SQuAD model performance with 1 GPU."""

    self._setup()
    self.num_gpus = 1
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_squad_eager')
    FLAGS.train_batch_size = 2

Zongwei Zhou's avatar
Zongwei Zhou committed
195
    self._run_and_report_benchmark(run_eagerly=True)
196

197
198
199
200
201
202
  def benchmark_1_gpu_xla(self):
    """Tests BERT SQuAD model performance with 1 GPU with XLA."""

    self._setup()
    self.num_gpus = 1
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_xla_squad')
203
204
    # XLA runs out of memory when running with batch size 4.
    FLAGS.train_batch_size = 3
205
    FLAGS.enable_xla = True
206

207
    self._run_and_report_benchmark()
208
209
210
211
212
213
214

  def benchmark_1_gpu_no_dist_strat(self):
    """Tests BERT SQuAD model performance with 1 GPU without DS."""

    self._setup()
    self.num_gpus = 1
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_no_dist_strat_squad')
215
    FLAGS.train_batch_size = 4
216

217
    self._run_and_report_benchmark(ds_type='off')
218
219
220
221
222
223
224
225

  def benchmark_1_gpu_eager_no_dist_strat(self):
    """Tests BERT SQuAD model performance with 1 GPU with eager execution."""

    self._setup()
    self.num_gpus = 1
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_1_gpu_eager_no_dist_strat_squad')
226
    FLAGS.train_batch_size = 4
227

228
    self._run_and_report_benchmark(ds_type='off', run_eagerly=True)
229

Jing Li's avatar
Jing Li committed
230
  @owner_utils.Owner('tf-model-garden')
davidmochen's avatar
davidmochen committed
231
  def benchmark_8_gpu(self):
232
233
234
235
236
    """Tests BERT SQuAD model performance with 8 GPUs."""

    self._setup()
    self.num_gpus = 8
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_squad')
Sai Ganesh Bandiatmakuri's avatar
Sai Ganesh Bandiatmakuri committed
237
    FLAGS.train_batch_size = 24
238
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
239

240
    self._run_and_report_benchmark()
241

242
243
244
245
246
247
248
249
250
251
  def benchmark_1_gpu_fp16_eager(self):
    """Tests BERT SQuAD model performance with 1 GPU and FP16."""

    self._setup()
    self.num_gpus = 1
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_squad_fp16_eager')
    FLAGS.train_batch_size = 4
    FLAGS.dtype = 'fp16'
    FLAGS.loss_scale = 'dynamic'

Zongwei Zhou's avatar
Zongwei Zhou committed
252
    self._run_and_report_benchmark(run_eagerly=True)
253

254
255
256
257
258
259
260
261
262
263
264
265
  def benchmark_1_gpu_fp16(self):
    """Tests BERT SQuAD model performance with 1 GPU and FP16."""

    self._setup()
    self.num_gpus = 1
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_squad_fp16')
    FLAGS.train_batch_size = 4
    FLAGS.dtype = 'fp16'
    FLAGS.loss_scale = 'dynamic'

    self._run_and_report_benchmark()

266
267
268
269
270
271
272
273
274
275
276
277
278
  def benchmark_1_gpu_xla_fp16(self):
    """Tests BERT SQuAD model performance with 1 GPU with XLA and FP16."""

    self._setup()
    self.num_gpus = 1
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_xla_squad_fp16')
    FLAGS.train_batch_size = 4
    FLAGS.enable_xla = True
    FLAGS.dtype = 'fp16'
    FLAGS.loss_scale = 'dynamic'

    self._run_and_report_benchmark()

279
280
281
282
283
284
285
286
287
  def benchmark_8_gpu_fp16(self):
    """Tests BERT SQuAD model performance with 8 GPUs."""

    self._setup()
    self.num_gpus = 8
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_squad_fp16')
    FLAGS.train_batch_size = 32
    FLAGS.dtype = 'fp16'
    FLAGS.loss_scale = 'dynamic'
288
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
289
290
291

    self._run_and_report_benchmark()

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
292
293
294
295
296
297
298
299
300
301
302
303
304
  def benchmark_8_gpu_xla_fp16(self):
    """Tests BERT SQuAD model performance with 8 GPUs with XLA."""

    self._setup()
    self.num_gpus = 8
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_squad_fp16')
    FLAGS.train_batch_size = 32
    FLAGS.enable_xla = True
    FLAGS.dtype = 'fp16'
    FLAGS.loss_scale = 'dynamic'

    self._run_and_report_benchmark()

305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
  def benchmark_1_gpu_amp(self):
    """Tests BERT SQuAD model performance with 1 GPU with automatic mixed precision."""

    self._setup()
    self.num_gpus = 1
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_amp_squad')
    FLAGS.train_batch_size = 4
    FLAGS.dtype = 'fp16'
    FLAGS.fp16_implementation = 'graph_rewrite'

    self._run_and_report_benchmark()

  def benchmark_8_gpu_amp(self):
    """Tests BERT SQuAD model performance with 1 GPU with automatic mixed precision."""

    self._setup()
    self.num_gpus = 8
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_amp_squad')
    FLAGS.train_batch_size = 32
    FLAGS.dtype = 'fp16'
    FLAGS.fp16_implementation = 'graph_rewrite'
326
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
327
328

    self._run_and_report_benchmark()
329

Jing Li's avatar
Jing Li committed
330
  @owner_utils.Owner('tf-model-garden')
David Chen's avatar
David Chen committed
331
332
333
334
335
336
  def benchmark_2x2_tpu(self):
    """Tests BERT SQuAD model performance with 2x2 TPU."""

    self._setup()
    FLAGS.model_dir = self._get_model_dir('benchmark_2x2_tpu')
    FLAGS.train_batch_size = 48
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
337
338
339
340
341
342
343
    FLAGS.predict_batch_size = 48
    FLAGS.mode = 'train'
    FLAGS.learning_rate = 8e-5
    FLAGS.num_train_epochs = 1
    FLAGS.steps_per_loop = 100
    FLAGS.do_lower_case = True
    FLAGS.init_checkpoint = PRETRAINED_CHECKPOINT_PATH
David Chen's avatar
David Chen committed
344
345
    self._run_and_report_benchmark()

346
347
348
349
350

class BertSquadAccuracy(BertSquadBenchmarkBase):
  """Short accuracy test for BERT SQuAD model.

  Tests BERT SQuAD accuracy. The naming convention of below test cases follow
David Chen's avatar
David Chen committed
351
352
  `benchmark_(number of gpus)_gpu` format for GPUs and
  `benchmark_(topology)_tpu` format for TPUs.
353
354
  """

David Chen's avatar
David Chen committed
355
  def __init__(self, output_dir=None, tpu=None, **kwargs):
Zongwei Zhou's avatar
Zongwei Zhou committed
356
357
    super(BertSquadAccuracy, self).__init__(
        output_dir=output_dir, tpu=tpu, **kwargs)
358
359
360
361
362
363
364
365
366
367
368

  def _setup(self):
    """Sets up the benchmark and SQuAD flags."""
    super(BertSquadAccuracy, self)._setup()
    FLAGS.train_data_path = SQUAD_TRAIN_DATA_PATH
    FLAGS.predict_file = SQUAD_PREDICT_FILE
    FLAGS.vocab_file = SQUAD_VOCAB_FILE
    FLAGS.input_meta_data_path = SQUAD_FULL_INPUT_META_DATA_PATH
    FLAGS.bert_config_file = MODEL_CONFIG_FILE_PATH
    FLAGS.init_checkpoint = PRETRAINED_CHECKPOINT_PATH
    FLAGS.num_train_epochs = 2
369
    FLAGS.steps_per_loop = 100
370

371
  @benchmark_wrappers.enable_runtime_flags
Hongkun Yu's avatar
Hongkun Yu committed
372
  def _run_and_report_benchmark(self, run_eagerly=False, ds_type='mirrored'):
373
    """Runs the benchmark and reports various metrics."""
374
    start_time_sec = time.time()
375
376
    self._train_squad(run_eagerly=run_eagerly, ds_type=ds_type)
    self._evaluate_squad(ds_type=ds_type)
377
378
379
380
    wall_time_sec = time.time() - start_time_sec

    summary = self._read_training_summary_from_file()
    summary['eval_metrics'] = self.eval_metrics
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
381
    summary['start_time_sec'] = start_time_sec
382
383
384
385

    super(BertSquadAccuracy, self)._report_benchmark(
        stats=summary,
        wall_time_sec=wall_time_sec,
386
        min_accuracy=0.900,
387
        max_accuracy=0.920)
388

389
390
391
392
393
394
395
396
  def benchmark_1_gpu_eager(self):
    """Tests BERT SQuAD model accuracy with 1 GPU with eager execution."""

    self._setup()
    self.num_gpus = 1
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_squad_eager')
    FLAGS.train_batch_size = 4

397
    self._run_and_report_benchmark(ds_type='off', run_eagerly=True)
398

Jing Li's avatar
Jing Li committed
399
  @owner_utils.Owner('tf-model-garden')
400
401
  def benchmark_8_gpu(self):
    """Tests BERT SQuAD model accuracy with 8 GPUs."""
davidmochen's avatar
davidmochen committed
402
403
404
405

    self._setup()
    self.num_gpus = 8
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_squad')
406
    FLAGS.train_batch_size = 24
407
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
davidmochen's avatar
davidmochen committed
408

409
    self._run_and_report_benchmark()
davidmochen's avatar
davidmochen committed
410

411
412
413
414
415
416
417
418
419
  def benchmark_8_gpu_fp16(self):
    """Tests BERT SQuAD model accuracy with 8 GPUs and FP16."""

    self._setup()
    self.num_gpus = 8
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_squad_fp16')
    FLAGS.train_batch_size = 32
    FLAGS.dtype = 'fp16'
    FLAGS.loss_scale = 'dynamic'
420
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
421
422
423

    self._run_and_report_benchmark()

424
425
426
427
428
429
430
  def benchmark_8_gpu_xla(self):
    """Tests BERT SQuAD model accuracy with 8 GPUs."""

    self._setup()
    self.num_gpus = 8
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_squad_xla')
    FLAGS.train_batch_size = 32
431
    FLAGS.enable_xla = True
432
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
433

434
    self._run_and_report_benchmark()
435

Jing Li's avatar
Jing Li committed
436
  @owner_utils.Owner('tf-model-garden')
David Chen's avatar
David Chen committed
437
438
439
440
441
442
443
444
445
  def benchmark_2x2_tpu(self):
    """Tests BERT SQuAD model accuracy with 2x2 TPU."""

    self._setup()
    FLAGS.model_dir = self._get_model_dir('benchmark_2x2_tpu')
    FLAGS.train_batch_size = 48

    self._run_and_report_benchmark()

davidmochen's avatar
davidmochen committed
446

447
448
449
450
451
class BertSquadMultiWorkerAccuracy(BertSquadBenchmarkBase):
  """BERT SQuAD distributed accuracy tests with multiple workers."""

  def __init__(self, output_dir=None, tpu=None, **kwargs):
    super(BertSquadMultiWorkerAccuracy, self).__init__(
Zongwei Zhou's avatar
Zongwei Zhou committed
452
        output_dir=output_dir, tpu=tpu, **kwargs)
453
454
455
456
457
458
459
460
461
462
463

  def _setup(self):
    """Sets up the benchmark and SQuAD flags."""
    super(BertSquadMultiWorkerAccuracy, self)._setup()
    FLAGS.train_data_path = SQUAD_TRAIN_DATA_PATH
    FLAGS.predict_file = SQUAD_PREDICT_FILE
    FLAGS.vocab_file = SQUAD_VOCAB_FILE
    FLAGS.input_meta_data_path = SQUAD_FULL_INPUT_META_DATA_PATH
    FLAGS.bert_config_file = MODEL_CONFIG_FILE_PATH
    FLAGS.init_checkpoint = PRETRAINED_CHECKPOINT_PATH
    FLAGS.num_train_epochs = 2
464
    FLAGS.steps_per_loop = 100
465
466

  @benchmark_wrappers.enable_runtime_flags
Hongkun Yu's avatar
Hongkun Yu committed
467
  def _run_and_report_benchmark(self, use_ds=True, run_eagerly=False):
468
469
    """Runs the benchmark and reports various metrics."""
    start_time_sec = time.time()
Hongkun Yu's avatar
Hongkun Yu committed
470
    self._train_squad(run_eagerly=run_eagerly, ds_type='multi_worker_mirrored')
471
    self._evaluate_squad(ds_type='multi_worker_mirrored')
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
    wall_time_sec = time.time() - start_time_sec

    summary = self._read_training_summary_from_file()
    summary['eval_metrics'] = self.eval_metrics

    super(BertSquadMultiWorkerAccuracy, self)._report_benchmark(
        stats=summary,
        wall_time_sec=wall_time_sec,
        min_accuracy=0.900,
        max_accuracy=0.920)

  def _benchmark_common(self, num_workers, all_reduce_alg):
    """Common to all benchmarks in this class."""
    self._setup()

    num_gpus = 8
    FLAGS.num_gpus = num_gpus
    FLAGS.dtype = 'fp16'
    FLAGS.enable_xla = False
    FLAGS.distribution_strategy = 'multi_worker_mirrored'
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
    FLAGS.datasets_num_private_threads = 32
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_8_gpu_{}_worker_fp16_{}_tweaked'.format(
            num_workers, all_reduce_alg))
    FLAGS.train_batch_size = 4 * num_gpus * num_workers
    FLAGS.all_reduce_alg = all_reduce_alg

    self._run_and_report_benchmark()

Yanhui Liang's avatar
Yanhui Liang committed
502
503
504
505
506
507
508
509
  def benchmark_eager_8_gpu_2_workers_fp16_ring_tweaked(self):
    """8 GPUs per worker, 2 workers, fp16, ring all-reduce."""
    self._benchmark_common(num_workers=2, all_reduce_alg='ring')

  def benchmark_eager_8_gpu_2_workers_fp16_nccl_tweaked(self):
    """8 GPUs per worker, 2 workers, fp16, nccl all-reduce."""
    self._benchmark_common(num_workers=2, all_reduce_alg='nccl')

510
511
512
513
514
515
516
517
518
519
520
521
522
523
  def benchmark_8_gpu_8_workers_fp16_ring_tweaked(self):
    """8 GPUs per worker, 8 workers, fp16, ring all-reduce."""
    self._benchmark_common(num_workers=8, all_reduce_alg='ring')

  def benchmark_8_gpu_8_workers_fp16_nccl_tweaked(self):
    """8 GPUs per worker, 8 workers, fp16, nccl all-reduce."""
    self._benchmark_common(num_workers=8, all_reduce_alg='nccl')


class BertSquadMultiWorkerBenchmark(BertSquadBenchmarkBase):
  """BERT SQuAD distributed benchmark tests with multiple workers."""

  def __init__(self, output_dir=TMP_DIR, tpu=None, **kwargs):
    super(BertSquadMultiWorkerBenchmark, self).__init__(
Zongwei Zhou's avatar
Zongwei Zhou committed
524
        output_dir=output_dir, tpu=tpu, **kwargs)
525
526
527
528
529
530
531

  def _setup(self):
    """Sets up the benchmark and SQuAD flags."""
    super(BertSquadMultiWorkerBenchmark, self)._setup()
    FLAGS.train_data_path = SQUAD_TRAIN_DATA_PATH
    FLAGS.predict_file = SQUAD_PREDICT_FILE
    FLAGS.vocab_file = SQUAD_VOCAB_FILE
532
    FLAGS.input_meta_data_path = SQUAD_FULL_INPUT_META_DATA_PATH
533
534
    FLAGS.bert_config_file = MODEL_CONFIG_FILE_PATH
    FLAGS.num_train_epochs = 1
535
    FLAGS.steps_per_loop = 100
536
537

  @benchmark_wrappers.enable_runtime_flags
Hongkun Yu's avatar
Hongkun Yu committed
538
  def _run_and_report_benchmark(self, use_ds=True, run_eagerly=False):
539
    """Runs the benchmark and reports various metrics."""
540
541
542
543
    if FLAGS.train_batch_size <= 4 * 8:
      FLAGS.input_meta_data_path = SQUAD_LONG_INPUT_META_DATA_PATH
    else:
      FLAGS.input_meta_data_path = SQUAD_FULL_INPUT_META_DATA_PATH
544
    start_time_sec = time.time()
Hongkun Yu's avatar
Hongkun Yu committed
545
    self._train_squad(run_eagerly=run_eagerly, ds_type='multi_worker_mirrored')
546
547
548
549
550
551
552
553
554
555
556
    wall_time_sec = time.time() - start_time_sec

    summary = self._read_training_summary_from_file()
    summary['start_time_sec'] = start_time_sec

    super(BertSquadMultiWorkerBenchmark, self)._report_benchmark(
        stats=summary,
        wall_time_sec=wall_time_sec,
        min_accuracy=0,
        max_accuracy=1)

Hongkun Yu's avatar
Hongkun Yu committed
557
  def _benchmark_common(self, num_workers, all_reduce_alg):
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
    """Common to all benchmarks in this class."""
    self._setup()

    num_gpus = 8
    FLAGS.num_gpus = num_gpus
    FLAGS.dtype = 'fp16'
    FLAGS.enable_xla = False
    FLAGS.distribution_strategy = 'multi_worker_mirrored'
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
    FLAGS.datasets_num_private_threads = 32
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_8_gpu_{}_worker_fp16_{}_tweaked'.format(
            num_workers, all_reduce_alg))
    FLAGS.train_batch_size = 4 * num_gpus * num_workers
    FLAGS.all_reduce_alg = all_reduce_alg

    self._run_and_report_benchmark()

  def benchmark_8_gpu_1_worker_fp16_ring_tweaked(self):
    """8 GPUs per worker, 1 worker, fp16, ring all-reduce."""
    self._benchmark_common(num_workers=1, all_reduce_alg='ring')

  def benchmark_8_gpu_1_worker_fp16_nccl_tweaked(self):
    """8 GPUs per worker, 1 worker, fp16, nccl all-reduce."""
    self._benchmark_common(num_workers=1, all_reduce_alg='nccl')

  def benchmark_8_gpu_2_workers_fp16_ring_tweaked(self):
    """8 GPUs per worker, 2 workers, fp16, ring all-reduce."""
Hongkun Yu's avatar
Hongkun Yu committed
586
    self._benchmark_common(num_workers=2, all_reduce_alg='ring')
587
588
589

  def benchmark_8_gpu_2_workers_fp16_nccl_tweaked(self):
    """8 GPUs per worker, 2 workers, fp16, nccl all-reduce."""
Hongkun Yu's avatar
Hongkun Yu committed
590
    self._benchmark_common(num_workers=2, all_reduce_alg='nccl')
591
592
593

  def benchmark_8_gpu_8_workers_fp16_ring_tweaked(self):
    """8 GPUs per worker, 8 workers, fp16, ring all-reduce."""
Hongkun Yu's avatar
Hongkun Yu committed
594
    self._benchmark_common(num_workers=8, all_reduce_alg='ring')
595
596
597

  def benchmark_8_gpu_8_workers_fp16_nccl_tweaked(self):
    """8 GPUs per worker, 8 workers, fp16, nccl all-reduce."""
Hongkun Yu's avatar
Hongkun Yu committed
598
    self._benchmark_common(num_workers=8, all_reduce_alg='nccl')
599
600


davidmochen's avatar
davidmochen committed
601
602
if __name__ == '__main__':
  tf.test.main()