bert_squad_benchmark.py 23.6 KB
Newer Older
davidmochen's avatar
davidmochen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Executes BERT SQuAD benchmarks and accuracy tests."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import json
import os
import time

# pylint: disable=g-bad-import-order
from absl import flags
from absl.testing import flagsaver
28
import tensorflow as tf
davidmochen's avatar
davidmochen committed
29
30
# pylint: enable=g-bad-import-order

31
32
from official.benchmark import bert_benchmark_utils as benchmark_utils
from official.benchmark import squad_evaluate_v1_1
33
from official.nlp.bert import run_squad
davidmochen's avatar
davidmochen committed
34
from official.utils.misc import distribution_utils
35
from official.utils.misc import keras_utils
36
37
from official.utils.testing import benchmark_wrappers

davidmochen's avatar
davidmochen committed
38
39

# pylint: disable=line-too-long
David Chen's avatar
David Chen committed
40
PRETRAINED_CHECKPOINT_PATH = 'gs://cloud-tpu-checkpoints/bert/keras_bert/uncased_L-24_H-1024_A-16/bert_model.ckpt'
davidmochen's avatar
davidmochen committed
41
42
SQUAD_TRAIN_DATA_PATH = 'gs://tf-perfzero-data/bert/squad/squad_train.tf_record'
SQUAD_PREDICT_FILE = 'gs://tf-perfzero-data/bert/squad/dev-v1.1.json'
David Chen's avatar
David Chen committed
43
SQUAD_VOCAB_FILE = 'gs://tf-perfzero-data/bert/squad/vocab.txt'
David Chen's avatar
David Chen committed
44
SQUAD_MEDIUM_INPUT_META_DATA_PATH = 'gs://tf-perfzero-data/bert/squad/squad_medium_meta_data'
Zongwei Zhou's avatar
Zongwei Zhou committed
45
SQUAD_LONG_INPUT_META_DATA_PATH = 'gs://tf-perfzero-data/bert/squad/squad_long_meta_data'
46
SQUAD_FULL_INPUT_META_DATA_PATH = 'gs://tf-perfzero-data/bert/squad/squad_full_meta_data'
David Chen's avatar
David Chen committed
47
MODEL_CONFIG_FILE_PATH = 'gs://cloud-tpu-checkpoints/bert/keras_bert/uncased_L-24_H-1024_A-16/bert_config.json'
davidmochen's avatar
davidmochen committed
48
49
# pylint: enable=line-too-long

David Chen's avatar
David Chen committed
50
TMP_DIR = os.getenv('TMPDIR')
davidmochen's avatar
davidmochen committed
51
52
53
54
55
56
FLAGS = flags.FLAGS


class BertSquadBenchmarkBase(benchmark_utils.BertBenchmarkBase):
  """Base class to hold methods common to test classes in the module."""

David Chen's avatar
David Chen committed
57
58
59
60
  def __init__(self, output_dir=None, tpu=None):
    super(BertSquadBenchmarkBase, self).__init__(output_dir=output_dir)
    self.tpu = tpu

61
62
  def _read_training_summary_from_file(self):
    """Reads the training summary from a file."""
63
64
    summary_path = os.path.join(FLAGS.model_dir,
                                'summaries/training_summary.txt')
65
66
    with tf.io.gfile.GFile(summary_path, 'rb') as reader:
      return json.loads(reader.read().decode('utf-8'))
67

68
69
70
71
  def _read_input_meta_data_from_file(self):
    """Reads the input metadata from a file."""
    with tf.io.gfile.GFile(FLAGS.input_meta_data_path, 'rb') as reader:
      return json.loads(reader.read().decode('utf-8'))
72

73
74
  def _read_predictions_dataset_from_file(self):
    """Reads the predictions dataset from a file."""
75
76
    with tf.io.gfile.GFile(SQUAD_PREDICT_FILE, 'r') as reader:
      dataset_json = json.load(reader)
77
      return dataset_json['data']
78

79
80
81
  def _read_predictions_from_file(self):
    """Reads the predictions from a file."""
    predictions_file = os.path.join(FLAGS.model_dir, 'predictions.json')
82
    with tf.io.gfile.GFile(predictions_file, 'r') as reader:
83
      return json.load(reader)
84

85
86
87
88
89
90
91
92
93
94
95
  def _get_distribution_strategy(self, ds_type='mirrored'):
    """Gets the distribution strategy.

    Args:
      ds_type: String, the distribution strategy type to be used. Can be
      'mirrored', 'multi_worker_mirrored', 'tpu' and 'off'.

    Returns:
      A `tf.distribute.DistibutionStrategy` object.
    """
    if self.tpu or ds_type == 'tpu':
David Chen's avatar
David Chen committed
96
97
      return distribution_utils.get_distribution_strategy(
          distribution_strategy='tpu', tpu_address=self.tpu)
98
99
100
101
102
103
104
105
    elif ds_type == 'multi_worker_mirrored':
      # Configures cluster spec for multi-worker distribution strategy.
      _ = distribution_utils.configure_cluster(FLAGS.worker_hosts,
                                               FLAGS.task_index)
    return distribution_utils.get_distribution_strategy(
        distribution_strategy=ds_type,
        num_gpus=self.num_gpus,
        all_reduce_alg=FLAGS.all_reduce_alg)
106

107
108
109
110
111
112
113
114
115
  def _init_gpu_and_data_threads(self):
    """Set env variables before any TF calls."""
    if FLAGS.tf_gpu_thread_mode:
      keras_utils.set_gpu_thread_mode_and_count(
          per_gpu_thread_count=FLAGS.per_gpu_thread_count,
          gpu_thread_mode=FLAGS.tf_gpu_thread_mode,
          num_gpus=self.num_gpus,
          datasets_num_private_threads=FLAGS.datasets_num_private_threads)

davidmochen's avatar
davidmochen committed
116
  @flagsaver.flagsaver
117
118
  def _train_squad(self, run_eagerly=False, ds_type='mirrored'):
    """Runs BERT SQuAD training. Uses mirrored strategy by default."""
David Chen's avatar
David Chen committed
119
    assert tf.version.VERSION.startswith('2.')
120
    self._init_gpu_and_data_threads()
121
    input_meta_data = self._read_input_meta_data_from_file()
122
    strategy = self._get_distribution_strategy(ds_type)
davidmochen's avatar
davidmochen committed
123
124
125
126

    run_squad.train_squad(
        strategy=strategy,
        input_meta_data=input_meta_data,
127
        run_eagerly=run_eagerly,
davidmochen's avatar
davidmochen committed
128
        custom_callbacks=[self.timer_callback])
129
130

  @flagsaver.flagsaver
131
132
  def _evaluate_squad(self, ds_type='mirrored'):
    """Runs BERT SQuAD evaluation. Uses mirrored strategy by default."""
David Chen's avatar
David Chen committed
133
    assert tf.version.VERSION.startswith('2.')
134
    self._init_gpu_and_data_threads()
135
    input_meta_data = self._read_input_meta_data_from_file()
136
    strategy = self._get_distribution_strategy(ds_type)
137

138
    run_squad.predict_squad(strategy=strategy, input_meta_data=input_meta_data)
139
140
141
142
143

    dataset = self._read_predictions_dataset_from_file()
    predictions = self._read_predictions_from_file()

    eval_metrics = squad_evaluate_v1_1.evaluate(dataset, predictions)
144
145
    # Use F1 score as reported evaluation metric.
    self.eval_metrics = eval_metrics['f1']
davidmochen's avatar
davidmochen committed
146
147


148
class BertSquadBenchmarkReal(BertSquadBenchmarkBase):
davidmochen's avatar
davidmochen committed
149
150
151
152
  """Short benchmark performance tests for BERT SQuAD model.

  Tests BERT SQuAD performance in different GPU configurations.
  The naming convention of below test cases follow
David Chen's avatar
David Chen committed
153
154
  `benchmark_(number of gpus)_gpu` format for GPUs and
  `benchmark_(topology)_tpu` format for TPUs.
davidmochen's avatar
davidmochen committed
155
156
  """

David Chen's avatar
David Chen committed
157
158
  def __init__(self, output_dir=TMP_DIR, tpu=None, **kwargs):
    super(BertSquadBenchmarkReal, self).__init__(output_dir=output_dir, tpu=tpu)
davidmochen's avatar
davidmochen committed
159
160

  def _setup(self):
161
162
    """Sets up the benchmark and SQuAD flags."""
    super(BertSquadBenchmarkReal, self)._setup()
davidmochen's avatar
davidmochen committed
163
164
165
166
167
    FLAGS.train_data_path = SQUAD_TRAIN_DATA_PATH
    FLAGS.predict_file = SQUAD_PREDICT_FILE
    FLAGS.vocab_file = SQUAD_VOCAB_FILE
    FLAGS.bert_config_file = MODEL_CONFIG_FILE_PATH
    FLAGS.num_train_epochs = 1
168
    FLAGS.steps_per_loop = 100
davidmochen's avatar
davidmochen committed
169

170
  @benchmark_wrappers.enable_runtime_flags
171
  def _run_and_report_benchmark(self,
172
173
                                run_eagerly=False,
                                ds_type='mirrored'):
174
    """Runs the benchmark and reports various metrics."""
175
176
177
178
    if FLAGS.train_batch_size <= 4:
      FLAGS.input_meta_data_path = SQUAD_MEDIUM_INPUT_META_DATA_PATH
    else:
      FLAGS.input_meta_data_path = SQUAD_LONG_INPUT_META_DATA_PATH
179
    start_time_sec = time.time()
180
    self._train_squad(run_eagerly=run_eagerly, ds_type=ds_type)
181
182
183
    wall_time_sec = time.time() - start_time_sec

    summary = self._read_training_summary_from_file()
David Chen's avatar
David Chen committed
184
    summary['start_time_sec'] = start_time_sec
185
186
187
188
189
190

    super(BertSquadBenchmarkReal, self)._report_benchmark(
        stats=summary,
        wall_time_sec=wall_time_sec,
        min_accuracy=0,
        max_accuracy=1)
davidmochen's avatar
davidmochen committed
191
192

  def benchmark_1_gpu(self):
193
    """Tests BERT SQuAD model performance with 1 GPU."""
davidmochen's avatar
davidmochen committed
194
195
196
197

    self._setup()
    self.num_gpus = 1
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_squad')
198
    FLAGS.train_batch_size = 4
davidmochen's avatar
davidmochen committed
199

200
    self._run_and_report_benchmark()
davidmochen's avatar
davidmochen committed
201

202
203
204
205
206
207
208
209
  def benchmark_1_gpu_eager(self):
    """Tests BERT SQuAD model performance with 1 GPU."""

    self._setup()
    self.num_gpus = 1
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_squad_eager')
    FLAGS.train_batch_size = 2

Zongwei Zhou's avatar
Zongwei Zhou committed
210
    self._run_and_report_benchmark(run_eagerly=True)
211

212
213
214
215
216
217
  def benchmark_1_gpu_xla(self):
    """Tests BERT SQuAD model performance with 1 GPU with XLA."""

    self._setup()
    self.num_gpus = 1
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_xla_squad')
218
219
    # XLA runs out of memory when running with batch size 4.
    FLAGS.train_batch_size = 3
220
    FLAGS.enable_xla = True
221

222
    self._run_and_report_benchmark()
223
224
225
226
227
228
229

  def benchmark_1_gpu_no_dist_strat(self):
    """Tests BERT SQuAD model performance with 1 GPU without DS."""

    self._setup()
    self.num_gpus = 1
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_no_dist_strat_squad')
230
    FLAGS.train_batch_size = 4
231

232
    self._run_and_report_benchmark(ds_type='off')
233
234
235
236
237
238
239
240

  def benchmark_1_gpu_eager_no_dist_strat(self):
    """Tests BERT SQuAD model performance with 1 GPU with eager execution."""

    self._setup()
    self.num_gpus = 1
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_1_gpu_eager_no_dist_strat_squad')
241
    FLAGS.train_batch_size = 4
242

243
    self._run_and_report_benchmark(ds_type='off', run_eagerly=True)
244

davidmochen's avatar
davidmochen committed
245
  def benchmark_2_gpu(self):
246
    """Tests BERT SQuAD model performance with 2 GPUs."""
davidmochen's avatar
davidmochen committed
247
248
249
250

    self._setup()
    self.num_gpus = 2
    FLAGS.model_dir = self._get_model_dir('benchmark_2_gpu_squad')
251
    FLAGS.train_batch_size = 8
davidmochen's avatar
davidmochen committed
252

253
    self._run_and_report_benchmark()
davidmochen's avatar
davidmochen committed
254
255

  def benchmark_4_gpu(self):
256
    """Tests BERT SQuAD model performance with 4 GPUs."""
davidmochen's avatar
davidmochen committed
257
258
259
260

    self._setup()
    self.num_gpus = 4
    FLAGS.model_dir = self._get_model_dir('benchmark_4_gpu_squad')
261
    FLAGS.train_batch_size = 16
davidmochen's avatar
davidmochen committed
262

263
    self._run_and_report_benchmark()
davidmochen's avatar
davidmochen committed
264
265

  def benchmark_8_gpu(self):
266
267
268
269
270
    """Tests BERT SQuAD model performance with 8 GPUs."""

    self._setup()
    self.num_gpus = 8
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_squad')
271
    FLAGS.train_batch_size = 32
272
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
273

274
    self._run_and_report_benchmark()
275

276
277
278
279
280
281
282
283
284
285
  def benchmark_1_gpu_fp16_eager(self):
    """Tests BERT SQuAD model performance with 1 GPU and FP16."""

    self._setup()
    self.num_gpus = 1
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_squad_fp16_eager')
    FLAGS.train_batch_size = 4
    FLAGS.dtype = 'fp16'
    FLAGS.loss_scale = 'dynamic'

Zongwei Zhou's avatar
Zongwei Zhou committed
286
    self._run_and_report_benchmark(run_eagerly=True)
287

288
289
290
291
292
293
294
295
296
297
298
299
  def benchmark_1_gpu_fp16(self):
    """Tests BERT SQuAD model performance with 1 GPU and FP16."""

    self._setup()
    self.num_gpus = 1
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_squad_fp16')
    FLAGS.train_batch_size = 4
    FLAGS.dtype = 'fp16'
    FLAGS.loss_scale = 'dynamic'

    self._run_and_report_benchmark()

300
301
302
303
304
305
306
307
308
309
310
311
312
  def benchmark_1_gpu_xla_fp16(self):
    """Tests BERT SQuAD model performance with 1 GPU with XLA and FP16."""

    self._setup()
    self.num_gpus = 1
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_xla_squad_fp16')
    FLAGS.train_batch_size = 4
    FLAGS.enable_xla = True
    FLAGS.dtype = 'fp16'
    FLAGS.loss_scale = 'dynamic'

    self._run_and_report_benchmark()

313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
  def benchmark_2_gpu_fp16(self):
    """Tests BERT SQuAD model performance with 2 GPUs and FP16."""

    self._setup()
    self.num_gpus = 2
    FLAGS.model_dir = self._get_model_dir('benchmark_2_gpu_squad_fp16')
    FLAGS.train_batch_size = 8
    FLAGS.dtype = 'fp16'
    FLAGS.loss_scale = 'dynamic'

    self._run_and_report_benchmark()

  def benchmark_4_gpu_fp16(self):
    """Tests BERT SQuAD model performance with 4 GPUs and FP16."""

    self._setup()
    self.num_gpus = 4
    FLAGS.model_dir = self._get_model_dir('benchmark_4_gpu_squad_fp16')
    FLAGS.train_batch_size = 16
    FLAGS.dtype = 'fp16'
    FLAGS.loss_scale = 'dynamic'

    self._run_and_report_benchmark()

  def benchmark_8_gpu_fp16(self):
    """Tests BERT SQuAD model performance with 8 GPUs."""

    self._setup()
    self.num_gpus = 8
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_squad_fp16')
    FLAGS.train_batch_size = 32
    FLAGS.dtype = 'fp16'
    FLAGS.loss_scale = 'dynamic'
346
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
347
348
349

    self._run_and_report_benchmark()

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
350
351
352
353
354
355
356
357
358
359
360
361
362
  def benchmark_8_gpu_xla_fp16(self):
    """Tests BERT SQuAD model performance with 8 GPUs with XLA."""

    self._setup()
    self.num_gpus = 8
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_squad_fp16')
    FLAGS.train_batch_size = 32
    FLAGS.enable_xla = True
    FLAGS.dtype = 'fp16'
    FLAGS.loss_scale = 'dynamic'

    self._run_and_report_benchmark()

363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
  def benchmark_1_gpu_amp(self):
    """Tests BERT SQuAD model performance with 1 GPU with automatic mixed precision."""

    self._setup()
    self.num_gpus = 1
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_amp_squad')
    FLAGS.train_batch_size = 4
    FLAGS.dtype = 'fp16'
    FLAGS.fp16_implementation = 'graph_rewrite'

    self._run_and_report_benchmark()

  def benchmark_4_gpu_amp(self):
    """Tests BERT SQuAD model performance with 1 GPU with automatic mixed precision."""

    self._setup()
    self.num_gpus = 4
    FLAGS.model_dir = self._get_model_dir('benchmark_4_gpu_amp_squad')
    FLAGS.train_batch_size = 16
    FLAGS.dtype = 'fp16'
    FLAGS.fp16_implementation = 'graph_rewrite'

    self._run_and_report_benchmark()

  def benchmark_8_gpu_amp(self):
    """Tests BERT SQuAD model performance with 1 GPU with automatic mixed precision."""

    self._setup()
    self.num_gpus = 8
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_amp_squad')
    FLAGS.train_batch_size = 32
    FLAGS.dtype = 'fp16'
    FLAGS.fp16_implementation = 'graph_rewrite'
396
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
397
398

    self._run_and_report_benchmark()
399

David Chen's avatar
David Chen committed
400
401
402
403
404
405
406
407
408
  def benchmark_2x2_tpu(self):
    """Tests BERT SQuAD model performance with 2x2 TPU."""

    self._setup()
    FLAGS.model_dir = self._get_model_dir('benchmark_2x2_tpu')
    FLAGS.train_batch_size = 48

    self._run_and_report_benchmark()

409
410
411
412
413

class BertSquadAccuracy(BertSquadBenchmarkBase):
  """Short accuracy test for BERT SQuAD model.

  Tests BERT SQuAD accuracy. The naming convention of below test cases follow
David Chen's avatar
David Chen committed
414
415
  `benchmark_(number of gpus)_gpu` format for GPUs and
  `benchmark_(topology)_tpu` format for TPUs.
416
417
  """

David Chen's avatar
David Chen committed
418
419
  def __init__(self, output_dir=None, tpu=None, **kwargs):
    super(BertSquadAccuracy, self).__init__(output_dir=output_dir, tpu=tpu)
420
421
422
423
424
425
426
427
428
429
430

  def _setup(self):
    """Sets up the benchmark and SQuAD flags."""
    super(BertSquadAccuracy, self)._setup()
    FLAGS.train_data_path = SQUAD_TRAIN_DATA_PATH
    FLAGS.predict_file = SQUAD_PREDICT_FILE
    FLAGS.vocab_file = SQUAD_VOCAB_FILE
    FLAGS.input_meta_data_path = SQUAD_FULL_INPUT_META_DATA_PATH
    FLAGS.bert_config_file = MODEL_CONFIG_FILE_PATH
    FLAGS.init_checkpoint = PRETRAINED_CHECKPOINT_PATH
    FLAGS.num_train_epochs = 2
431
    FLAGS.steps_per_loop = 100
432

433
  @benchmark_wrappers.enable_runtime_flags
434
  def _run_and_report_benchmark(self,
435
436
                                run_eagerly=False,
                                ds_type='mirrored'):
437
    """Runs the benchmark and reports various metrics."""
438
    start_time_sec = time.time()
439
440
    self._train_squad(run_eagerly=run_eagerly, ds_type=ds_type)
    self._evaluate_squad(ds_type=ds_type)
441
442
443
444
445
446
447
448
    wall_time_sec = time.time() - start_time_sec

    summary = self._read_training_summary_from_file()
    summary['eval_metrics'] = self.eval_metrics

    super(BertSquadAccuracy, self)._report_benchmark(
        stats=summary,
        wall_time_sec=wall_time_sec,
449
        min_accuracy=0.900,
450
        max_accuracy=0.920)
451

452
453
454
455
456
457
458
459
  def benchmark_1_gpu_eager(self):
    """Tests BERT SQuAD model accuracy with 1 GPU with eager execution."""

    self._setup()
    self.num_gpus = 1
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_squad_eager')
    FLAGS.train_batch_size = 4

460
    self._run_and_report_benchmark(ds_type='off', run_eagerly=True)
461

462
463
  def benchmark_8_gpu(self):
    """Tests BERT SQuAD model accuracy with 8 GPUs."""
davidmochen's avatar
davidmochen committed
464
465
466
467

    self._setup()
    self.num_gpus = 8
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_squad')
468
    FLAGS.train_batch_size = 24
469
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
davidmochen's avatar
davidmochen committed
470

471
    self._run_and_report_benchmark()
davidmochen's avatar
davidmochen committed
472

473
474
475
476
477
478
479
480
481
  def benchmark_8_gpu_fp16(self):
    """Tests BERT SQuAD model accuracy with 8 GPUs and FP16."""

    self._setup()
    self.num_gpus = 8
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_squad_fp16')
    FLAGS.train_batch_size = 32
    FLAGS.dtype = 'fp16'
    FLAGS.loss_scale = 'dynamic'
482
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
483
484
485

    self._run_and_report_benchmark()

486
487
488
489
490
491
492
  def benchmark_8_gpu_xla(self):
    """Tests BERT SQuAD model accuracy with 8 GPUs."""

    self._setup()
    self.num_gpus = 8
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_squad_xla')
    FLAGS.train_batch_size = 32
493
    FLAGS.enable_xla = True
494
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
495

496
    self._run_and_report_benchmark()
497

David Chen's avatar
David Chen committed
498
499
500
501
502
503
504
505
506
  def benchmark_2x2_tpu(self):
    """Tests BERT SQuAD model accuracy with 2x2 TPU."""

    self._setup()
    FLAGS.model_dir = self._get_model_dir('benchmark_2x2_tpu')
    FLAGS.train_batch_size = 48

    self._run_and_report_benchmark()

davidmochen's avatar
davidmochen committed
507

508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
class BertSquadMultiWorkerAccuracy(BertSquadBenchmarkBase):
  """BERT SQuAD distributed accuracy tests with multiple workers."""

  def __init__(self, output_dir=None, tpu=None, **kwargs):
    super(BertSquadMultiWorkerAccuracy, self).__init__(
        output_dir=output_dir, tpu=tpu)

  def _setup(self):
    """Sets up the benchmark and SQuAD flags."""
    super(BertSquadMultiWorkerAccuracy, self)._setup()
    FLAGS.train_data_path = SQUAD_TRAIN_DATA_PATH
    FLAGS.predict_file = SQUAD_PREDICT_FILE
    FLAGS.vocab_file = SQUAD_VOCAB_FILE
    FLAGS.input_meta_data_path = SQUAD_FULL_INPUT_META_DATA_PATH
    FLAGS.bert_config_file = MODEL_CONFIG_FILE_PATH
    FLAGS.init_checkpoint = PRETRAINED_CHECKPOINT_PATH
    FLAGS.num_train_epochs = 2
525
    FLAGS.steps_per_loop = 100
526
527
528
529
530
531
532

  @benchmark_wrappers.enable_runtime_flags
  def _run_and_report_benchmark(self,
                                use_ds=True,
                                run_eagerly=False):
    """Runs the benchmark and reports various metrics."""
    start_time_sec = time.time()
533
534
535
    self._train_squad(run_eagerly=run_eagerly,
                      ds_type='multi_worker_mirrored')
    self._evaluate_squad(ds_type='multi_worker_mirrored')
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
    wall_time_sec = time.time() - start_time_sec

    summary = self._read_training_summary_from_file()
    summary['eval_metrics'] = self.eval_metrics

    super(BertSquadMultiWorkerAccuracy, self)._report_benchmark(
        stats=summary,
        wall_time_sec=wall_time_sec,
        min_accuracy=0.900,
        max_accuracy=0.920)

  def _benchmark_common(self, num_workers, all_reduce_alg):
    """Common to all benchmarks in this class."""
    self._setup()

    num_gpus = 8
    FLAGS.num_gpus = num_gpus
    FLAGS.dtype = 'fp16'
Zongwei Zhou's avatar
Zongwei Zhou committed
554
555
    # Enable gradient allreduce in fp16
    FLAGS.explicit_allreduce = True
556
557
558
559
560
561
562
563
564
565
566
567
    FLAGS.enable_xla = False
    FLAGS.distribution_strategy = 'multi_worker_mirrored'
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
    FLAGS.datasets_num_private_threads = 32
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_8_gpu_{}_worker_fp16_{}_tweaked'.format(
            num_workers, all_reduce_alg))
    FLAGS.train_batch_size = 4 * num_gpus * num_workers
    FLAGS.all_reduce_alg = all_reduce_alg

    self._run_and_report_benchmark()

Yanhui Liang's avatar
Yanhui Liang committed
568
569
570
571
572
573
574
575
  def benchmark_eager_8_gpu_2_workers_fp16_ring_tweaked(self):
    """8 GPUs per worker, 2 workers, fp16, ring all-reduce."""
    self._benchmark_common(num_workers=2, all_reduce_alg='ring')

  def benchmark_eager_8_gpu_2_workers_fp16_nccl_tweaked(self):
    """8 GPUs per worker, 2 workers, fp16, nccl all-reduce."""
    self._benchmark_common(num_workers=2, all_reduce_alg='nccl')

576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
  def benchmark_8_gpu_8_workers_fp16_ring_tweaked(self):
    """8 GPUs per worker, 8 workers, fp16, ring all-reduce."""
    self._benchmark_common(num_workers=8, all_reduce_alg='ring')

  def benchmark_8_gpu_8_workers_fp16_nccl_tweaked(self):
    """8 GPUs per worker, 8 workers, fp16, nccl all-reduce."""
    self._benchmark_common(num_workers=8, all_reduce_alg='nccl')


class BertSquadMultiWorkerBenchmark(BertSquadBenchmarkBase):
  """BERT SQuAD distributed benchmark tests with multiple workers."""

  def __init__(self, output_dir=TMP_DIR, tpu=None, **kwargs):
    super(BertSquadMultiWorkerBenchmark, self).__init__(
        output_dir=output_dir, tpu=tpu)

  def _setup(self):
    """Sets up the benchmark and SQuAD flags."""
    super(BertSquadMultiWorkerBenchmark, self)._setup()
    FLAGS.train_data_path = SQUAD_TRAIN_DATA_PATH
    FLAGS.predict_file = SQUAD_PREDICT_FILE
    FLAGS.vocab_file = SQUAD_VOCAB_FILE
598
    FLAGS.input_meta_data_path = SQUAD_FULL_INPUT_META_DATA_PATH
599
600
    FLAGS.bert_config_file = MODEL_CONFIG_FILE_PATH
    FLAGS.num_train_epochs = 1
601
    FLAGS.steps_per_loop = 100
602
603
604
605
606
607

  @benchmark_wrappers.enable_runtime_flags
  def _run_and_report_benchmark(self,
                                use_ds=True,
                                run_eagerly=False):
    """Runs the benchmark and reports various metrics."""
608
609
610
611
    if FLAGS.train_batch_size <= 4 * 8:
      FLAGS.input_meta_data_path = SQUAD_LONG_INPUT_META_DATA_PATH
    else:
      FLAGS.input_meta_data_path = SQUAD_FULL_INPUT_META_DATA_PATH
612
    start_time_sec = time.time()
613
614
    self._train_squad(run_eagerly=run_eagerly,
                      ds_type='multi_worker_mirrored')
615
616
617
618
619
620
621
622
623
624
625
    wall_time_sec = time.time() - start_time_sec

    summary = self._read_training_summary_from_file()
    summary['start_time_sec'] = start_time_sec

    super(BertSquadMultiWorkerBenchmark, self)._report_benchmark(
        stats=summary,
        wall_time_sec=wall_time_sec,
        min_accuracy=0,
        max_accuracy=1)

Zongwei Zhou's avatar
Zongwei Zhou committed
626
627
  def _benchmark_common(self, num_workers, all_reduce_alg,
                        explicit_allreduce=False):
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
    """Common to all benchmarks in this class."""
    self._setup()

    num_gpus = 8
    FLAGS.num_gpus = num_gpus
    FLAGS.dtype = 'fp16'
    FLAGS.enable_xla = False
    FLAGS.distribution_strategy = 'multi_worker_mirrored'
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
    FLAGS.datasets_num_private_threads = 32
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_8_gpu_{}_worker_fp16_{}_tweaked'.format(
            num_workers, all_reduce_alg))
    FLAGS.train_batch_size = 4 * num_gpus * num_workers
    FLAGS.all_reduce_alg = all_reduce_alg
Zongwei Zhou's avatar
Zongwei Zhou committed
643
644
    # Enable gradient allreduce in fp16
    FLAGS.explicit_allreduce = explicit_allreduce
645
646
647
648
649
650
651
652
653
654
655
656
657

    self._run_and_report_benchmark()

  def benchmark_8_gpu_1_worker_fp16_ring_tweaked(self):
    """8 GPUs per worker, 1 worker, fp16, ring all-reduce."""
    self._benchmark_common(num_workers=1, all_reduce_alg='ring')

  def benchmark_8_gpu_1_worker_fp16_nccl_tweaked(self):
    """8 GPUs per worker, 1 worker, fp16, nccl all-reduce."""
    self._benchmark_common(num_workers=1, all_reduce_alg='nccl')

  def benchmark_8_gpu_2_workers_fp16_ring_tweaked(self):
    """8 GPUs per worker, 2 workers, fp16, ring all-reduce."""
Zongwei Zhou's avatar
Zongwei Zhou committed
658
659
    self._benchmark_common(num_workers=2, all_reduce_alg='ring',
                           explicit_allreduce=True)
660
661
662

  def benchmark_8_gpu_2_workers_fp16_nccl_tweaked(self):
    """8 GPUs per worker, 2 workers, fp16, nccl all-reduce."""
Zongwei Zhou's avatar
Zongwei Zhou committed
663
664
    self._benchmark_common(num_workers=2, all_reduce_alg='nccl',
                           explicit_allreduce=True)
665
666
667

  def benchmark_8_gpu_8_workers_fp16_ring_tweaked(self):
    """8 GPUs per worker, 8 workers, fp16, ring all-reduce."""
Zongwei Zhou's avatar
Zongwei Zhou committed
668
669
    self._benchmark_common(num_workers=8, all_reduce_alg='ring',
                           explicit_allreduce=True)
670
671
672

  def benchmark_8_gpu_8_workers_fp16_nccl_tweaked(self):
    """8 GPUs per worker, 8 workers, fp16, nccl all-reduce."""
Zongwei Zhou's avatar
Zongwei Zhou committed
673
674
    self._benchmark_common(num_workers=8, all_reduce_alg='nccl',
                           explicit_allreduce=True)
675
676


davidmochen's avatar
davidmochen committed
677
678
if __name__ == '__main__':
  tf.test.main()