bert_squad_benchmark.py 22.5 KB
Newer Older
davidmochen's avatar
davidmochen committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Executes BERT SQuAD benchmarks and accuracy tests."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import json
import os
import time

# pylint: disable=g-bad-import-order
from absl import flags
from absl.testing import flagsaver
28
import tensorflow as tf
davidmochen's avatar
davidmochen committed
29
30
# pylint: enable=g-bad-import-order

31
32
from official.benchmark import bert_benchmark_utils as benchmark_utils
from official.benchmark import squad_evaluate_v1_1
33
from official.nlp.bert import run_squad
davidmochen's avatar
davidmochen committed
34
from official.utils.misc import distribution_utils
35
from official.utils.misc import keras_utils
36
37
from official.utils.testing import benchmark_wrappers

davidmochen's avatar
davidmochen committed
38
39

# pylint: disable=line-too-long
David Chen's avatar
David Chen committed
40
PRETRAINED_CHECKPOINT_PATH = 'gs://cloud-tpu-checkpoints/bert/keras_bert/uncased_L-24_H-1024_A-16/bert_model.ckpt'
davidmochen's avatar
davidmochen committed
41
42
SQUAD_TRAIN_DATA_PATH = 'gs://tf-perfzero-data/bert/squad/squad_train.tf_record'
SQUAD_PREDICT_FILE = 'gs://tf-perfzero-data/bert/squad/dev-v1.1.json'
David Chen's avatar
David Chen committed
43
SQUAD_VOCAB_FILE = 'gs://tf-perfzero-data/bert/squad/vocab.txt'
David Chen's avatar
David Chen committed
44
SQUAD_MEDIUM_INPUT_META_DATA_PATH = 'gs://tf-perfzero-data/bert/squad/squad_medium_meta_data'
Zongwei Zhou's avatar
Zongwei Zhou committed
45
SQUAD_LONG_INPUT_META_DATA_PATH = 'gs://tf-perfzero-data/bert/squad/squad_long_meta_data'
46
SQUAD_FULL_INPUT_META_DATA_PATH = 'gs://tf-perfzero-data/bert/squad/squad_full_meta_data'
David Chen's avatar
David Chen committed
47
MODEL_CONFIG_FILE_PATH = 'gs://cloud-tpu-checkpoints/bert/keras_bert/uncased_L-24_H-1024_A-16/bert_config.json'
davidmochen's avatar
davidmochen committed
48
49
# pylint: enable=line-too-long

David Chen's avatar
David Chen committed
50
TMP_DIR = os.getenv('TMPDIR')
davidmochen's avatar
davidmochen committed
51
52
53
54
55
56
FLAGS = flags.FLAGS


class BertSquadBenchmarkBase(benchmark_utils.BertBenchmarkBase):
  """Base class to hold methods common to test classes in the module."""

David Chen's avatar
David Chen committed
57
58
59
60
  def __init__(self, output_dir=None, tpu=None):
    super(BertSquadBenchmarkBase, self).__init__(output_dir=output_dir)
    self.tpu = tpu

61
62
  def _read_training_summary_from_file(self):
    """Reads the training summary from a file."""
63
64
    summary_path = os.path.join(FLAGS.model_dir,
                                'summaries/training_summary.txt')
65
66
    with tf.io.gfile.GFile(summary_path, 'rb') as reader:
      return json.loads(reader.read().decode('utf-8'))
67

68
69
70
71
  def _read_input_meta_data_from_file(self):
    """Reads the input metadata from a file."""
    with tf.io.gfile.GFile(FLAGS.input_meta_data_path, 'rb') as reader:
      return json.loads(reader.read().decode('utf-8'))
72

73
74
  def _read_predictions_dataset_from_file(self):
    """Reads the predictions dataset from a file."""
75
76
    with tf.io.gfile.GFile(SQUAD_PREDICT_FILE, 'r') as reader:
      dataset_json = json.load(reader)
77
      return dataset_json['data']
78

79
80
81
  def _read_predictions_from_file(self):
    """Reads the predictions from a file."""
    predictions_file = os.path.join(FLAGS.model_dir, 'predictions.json')
82
    with tf.io.gfile.GFile(predictions_file, 'r') as reader:
83
      return json.load(reader)
84

85
  def _get_distribution_strategy(self, use_ds=True):
86
    """Gets the distribution strategy."""
David Chen's avatar
David Chen committed
87
88
89
90
91
92
93
    if self.tpu:
      return distribution_utils.get_distribution_strategy(
          distribution_strategy='tpu', tpu_address=self.tpu)
    else:
      return distribution_utils.get_distribution_strategy(
          distribution_strategy='mirrored' if use_ds else 'off',
          num_gpus=self.num_gpus)
94

95
96
97
98
99
100
101
102
103
  def _init_gpu_and_data_threads(self):
    """Set env variables before any TF calls."""
    if FLAGS.tf_gpu_thread_mode:
      keras_utils.set_gpu_thread_mode_and_count(
          per_gpu_thread_count=FLAGS.per_gpu_thread_count,
          gpu_thread_mode=FLAGS.tf_gpu_thread_mode,
          num_gpus=self.num_gpus,
          datasets_num_private_threads=FLAGS.datasets_num_private_threads)

davidmochen's avatar
davidmochen committed
104
  @flagsaver.flagsaver
105
  def _train_squad(self, use_ds=True, run_eagerly=False):
106
    """Runs BERT SQuAD training."""
David Chen's avatar
David Chen committed
107
    assert tf.version.VERSION.startswith('2.')
108
    self._init_gpu_and_data_threads()
109
    input_meta_data = self._read_input_meta_data_from_file()
110
    strategy = self._get_distribution_strategy(use_ds)
davidmochen's avatar
davidmochen committed
111
112
113
114

    run_squad.train_squad(
        strategy=strategy,
        input_meta_data=input_meta_data,
115
        run_eagerly=run_eagerly,
davidmochen's avatar
davidmochen committed
116
        custom_callbacks=[self.timer_callback])
117
118

  @flagsaver.flagsaver
119
  def _evaluate_squad(self, use_ds=True):
120
    """Runs BERT SQuAD evaluation."""
David Chen's avatar
David Chen committed
121
    assert tf.version.VERSION.startswith('2.')
122
    self._init_gpu_and_data_threads()
123
    input_meta_data = self._read_input_meta_data_from_file()
124
    strategy = self._get_distribution_strategy(use_ds)
125

126
    run_squad.predict_squad(strategy=strategy, input_meta_data=input_meta_data)
127
128
129
130
131

    dataset = self._read_predictions_dataset_from_file()
    predictions = self._read_predictions_from_file()

    eval_metrics = squad_evaluate_v1_1.evaluate(dataset, predictions)
132
133
    # Use F1 score as reported evaluation metric.
    self.eval_metrics = eval_metrics['f1']
davidmochen's avatar
davidmochen committed
134
135


136
class BertSquadBenchmarkReal(BertSquadBenchmarkBase):
davidmochen's avatar
davidmochen committed
137
138
139
140
  """Short benchmark performance tests for BERT SQuAD model.

  Tests BERT SQuAD performance in different GPU configurations.
  The naming convention of below test cases follow
David Chen's avatar
David Chen committed
141
142
  `benchmark_(number of gpus)_gpu` format for GPUs and
  `benchmark_(topology)_tpu` format for TPUs.
davidmochen's avatar
davidmochen committed
143
144
  """

David Chen's avatar
David Chen committed
145
146
  def __init__(self, output_dir=TMP_DIR, tpu=None, **kwargs):
    super(BertSquadBenchmarkReal, self).__init__(output_dir=output_dir, tpu=tpu)
davidmochen's avatar
davidmochen committed
147
148

  def _setup(self):
149
150
    """Sets up the benchmark and SQuAD flags."""
    super(BertSquadBenchmarkReal, self)._setup()
davidmochen's avatar
davidmochen committed
151
152
153
154
155
    FLAGS.train_data_path = SQUAD_TRAIN_DATA_PATH
    FLAGS.predict_file = SQUAD_PREDICT_FILE
    FLAGS.vocab_file = SQUAD_VOCAB_FILE
    FLAGS.bert_config_file = MODEL_CONFIG_FILE_PATH
    FLAGS.num_train_epochs = 1
156
    FLAGS.steps_per_loop = 100
davidmochen's avatar
davidmochen committed
157

158
  @benchmark_wrappers.enable_runtime_flags
159
160
161
  def _run_and_report_benchmark(self,
                                use_ds=True,
                                run_eagerly=False):
162
    """Runs the benchmark and reports various metrics."""
163
164
165
166
    if FLAGS.train_batch_size <= 4:
      FLAGS.input_meta_data_path = SQUAD_MEDIUM_INPUT_META_DATA_PATH
    else:
      FLAGS.input_meta_data_path = SQUAD_LONG_INPUT_META_DATA_PATH
167
    start_time_sec = time.time()
168
    self._train_squad(use_ds=use_ds, run_eagerly=run_eagerly)
169
170
171
    wall_time_sec = time.time() - start_time_sec

    summary = self._read_training_summary_from_file()
David Chen's avatar
David Chen committed
172
    summary['start_time_sec'] = start_time_sec
173
174
175
176
177
178

    super(BertSquadBenchmarkReal, self)._report_benchmark(
        stats=summary,
        wall_time_sec=wall_time_sec,
        min_accuracy=0,
        max_accuracy=1)
davidmochen's avatar
davidmochen committed
179
180

  def benchmark_1_gpu(self):
181
    """Tests BERT SQuAD model performance with 1 GPU."""
davidmochen's avatar
davidmochen committed
182
183
184
185

    self._setup()
    self.num_gpus = 1
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_squad')
186
    FLAGS.train_batch_size = 4
davidmochen's avatar
davidmochen committed
187

188
    self._run_and_report_benchmark()
davidmochen's avatar
davidmochen committed
189

190
191
192
193
194
195
196
197
  def benchmark_1_gpu_eager(self):
    """Tests BERT SQuAD model performance with 1 GPU."""

    self._setup()
    self.num_gpus = 1
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_squad_eager')
    FLAGS.train_batch_size = 2

Zongwei Zhou's avatar
Zongwei Zhou committed
198
    self._run_and_report_benchmark(run_eagerly=True)
199

200
201
202
203
204
205
  def benchmark_1_gpu_xla(self):
    """Tests BERT SQuAD model performance with 1 GPU with XLA."""

    self._setup()
    self.num_gpus = 1
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_xla_squad')
206
207
    # XLA runs out of memory when running with batch size 4.
    FLAGS.train_batch_size = 3
208
    FLAGS.enable_xla = True
209

210
    self._run_and_report_benchmark()
211
212
213
214
215
216
217

  def benchmark_1_gpu_no_dist_strat(self):
    """Tests BERT SQuAD model performance with 1 GPU without DS."""

    self._setup()
    self.num_gpus = 1
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_no_dist_strat_squad')
218
    FLAGS.train_batch_size = 4
219
220
221
222
223
224
225
226
227
228

    self._run_and_report_benchmark(use_ds=False)

  def benchmark_1_gpu_eager_no_dist_strat(self):
    """Tests BERT SQuAD model performance with 1 GPU with eager execution."""

    self._setup()
    self.num_gpus = 1
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_1_gpu_eager_no_dist_strat_squad')
229
    FLAGS.train_batch_size = 4
230
231
232

    self._run_and_report_benchmark(use_ds=False, run_eagerly=True)

davidmochen's avatar
davidmochen committed
233
  def benchmark_2_gpu(self):
234
    """Tests BERT SQuAD model performance with 2 GPUs."""
davidmochen's avatar
davidmochen committed
235
236
237
238

    self._setup()
    self.num_gpus = 2
    FLAGS.model_dir = self._get_model_dir('benchmark_2_gpu_squad')
239
    FLAGS.train_batch_size = 8
davidmochen's avatar
davidmochen committed
240

241
    self._run_and_report_benchmark()
davidmochen's avatar
davidmochen committed
242
243

  def benchmark_4_gpu(self):
244
    """Tests BERT SQuAD model performance with 4 GPUs."""
davidmochen's avatar
davidmochen committed
245
246
247
248

    self._setup()
    self.num_gpus = 4
    FLAGS.model_dir = self._get_model_dir('benchmark_4_gpu_squad')
249
    FLAGS.train_batch_size = 16
davidmochen's avatar
davidmochen committed
250

251
    self._run_and_report_benchmark()
davidmochen's avatar
davidmochen committed
252
253

  def benchmark_8_gpu(self):
254
255
256
257
258
    """Tests BERT SQuAD model performance with 8 GPUs."""

    self._setup()
    self.num_gpus = 8
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_squad')
259
    FLAGS.train_batch_size = 32
260
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
261

262
    self._run_and_report_benchmark()
263

264
265
266
267
268
269
270
271
272
273
  def benchmark_1_gpu_fp16_eager(self):
    """Tests BERT SQuAD model performance with 1 GPU and FP16."""

    self._setup()
    self.num_gpus = 1
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_squad_fp16_eager')
    FLAGS.train_batch_size = 4
    FLAGS.dtype = 'fp16'
    FLAGS.loss_scale = 'dynamic'

Zongwei Zhou's avatar
Zongwei Zhou committed
274
    self._run_and_report_benchmark(run_eagerly=True)
275

276
277
278
279
280
281
282
283
284
285
286
287
  def benchmark_1_gpu_fp16(self):
    """Tests BERT SQuAD model performance with 1 GPU and FP16."""

    self._setup()
    self.num_gpus = 1
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_squad_fp16')
    FLAGS.train_batch_size = 4
    FLAGS.dtype = 'fp16'
    FLAGS.loss_scale = 'dynamic'

    self._run_and_report_benchmark()

288
289
290
291
292
293
294
295
296
297
298
299
300
  def benchmark_1_gpu_xla_fp16(self):
    """Tests BERT SQuAD model performance with 1 GPU with XLA and FP16."""

    self._setup()
    self.num_gpus = 1
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_xla_squad_fp16')
    FLAGS.train_batch_size = 4
    FLAGS.enable_xla = True
    FLAGS.dtype = 'fp16'
    FLAGS.loss_scale = 'dynamic'

    self._run_and_report_benchmark()

301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
  def benchmark_2_gpu_fp16(self):
    """Tests BERT SQuAD model performance with 2 GPUs and FP16."""

    self._setup()
    self.num_gpus = 2
    FLAGS.model_dir = self._get_model_dir('benchmark_2_gpu_squad_fp16')
    FLAGS.train_batch_size = 8
    FLAGS.dtype = 'fp16'
    FLAGS.loss_scale = 'dynamic'

    self._run_and_report_benchmark()

  def benchmark_4_gpu_fp16(self):
    """Tests BERT SQuAD model performance with 4 GPUs and FP16."""

    self._setup()
    self.num_gpus = 4
    FLAGS.model_dir = self._get_model_dir('benchmark_4_gpu_squad_fp16')
    FLAGS.train_batch_size = 16
    FLAGS.dtype = 'fp16'
    FLAGS.loss_scale = 'dynamic'

    self._run_and_report_benchmark()

  def benchmark_8_gpu_fp16(self):
    """Tests BERT SQuAD model performance with 8 GPUs."""

    self._setup()
    self.num_gpus = 8
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_squad_fp16')
    FLAGS.train_batch_size = 32
    FLAGS.dtype = 'fp16'
    FLAGS.loss_scale = 'dynamic'
334
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
335
336
337

    self._run_and_report_benchmark()

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
338
339
340
341
342
343
344
345
346
347
348
349
350
  def benchmark_8_gpu_xla_fp16(self):
    """Tests BERT SQuAD model performance with 8 GPUs with XLA."""

    self._setup()
    self.num_gpus = 8
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_squad_fp16')
    FLAGS.train_batch_size = 32
    FLAGS.enable_xla = True
    FLAGS.dtype = 'fp16'
    FLAGS.loss_scale = 'dynamic'

    self._run_and_report_benchmark()

351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
  def benchmark_1_gpu_amp(self):
    """Tests BERT SQuAD model performance with 1 GPU with automatic mixed precision."""

    self._setup()
    self.num_gpus = 1
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_amp_squad')
    FLAGS.train_batch_size = 4
    FLAGS.dtype = 'fp16'
    FLAGS.fp16_implementation = 'graph_rewrite'

    self._run_and_report_benchmark()

  def benchmark_4_gpu_amp(self):
    """Tests BERT SQuAD model performance with 1 GPU with automatic mixed precision."""

    self._setup()
    self.num_gpus = 4
    FLAGS.model_dir = self._get_model_dir('benchmark_4_gpu_amp_squad')
    FLAGS.train_batch_size = 16
    FLAGS.dtype = 'fp16'
    FLAGS.fp16_implementation = 'graph_rewrite'

    self._run_and_report_benchmark()

  def benchmark_8_gpu_amp(self):
    """Tests BERT SQuAD model performance with 1 GPU with automatic mixed precision."""

    self._setup()
    self.num_gpus = 8
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_amp_squad')
    FLAGS.train_batch_size = 32
    FLAGS.dtype = 'fp16'
    FLAGS.fp16_implementation = 'graph_rewrite'
384
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
385
386

    self._run_and_report_benchmark()
387

David Chen's avatar
David Chen committed
388
389
390
391
392
393
394
395
396
  def benchmark_2x2_tpu(self):
    """Tests BERT SQuAD model performance with 2x2 TPU."""

    self._setup()
    FLAGS.model_dir = self._get_model_dir('benchmark_2x2_tpu')
    FLAGS.train_batch_size = 48

    self._run_and_report_benchmark()

397
398
399
400
401

class BertSquadAccuracy(BertSquadBenchmarkBase):
  """Short accuracy test for BERT SQuAD model.

  Tests BERT SQuAD accuracy. The naming convention of below test cases follow
David Chen's avatar
David Chen committed
402
403
  `benchmark_(number of gpus)_gpu` format for GPUs and
  `benchmark_(topology)_tpu` format for TPUs.
404
405
  """

David Chen's avatar
David Chen committed
406
407
  def __init__(self, output_dir=None, tpu=None, **kwargs):
    super(BertSquadAccuracy, self).__init__(output_dir=output_dir, tpu=tpu)
408
409
410
411
412
413
414
415
416
417
418

  def _setup(self):
    """Sets up the benchmark and SQuAD flags."""
    super(BertSquadAccuracy, self)._setup()
    FLAGS.train_data_path = SQUAD_TRAIN_DATA_PATH
    FLAGS.predict_file = SQUAD_PREDICT_FILE
    FLAGS.vocab_file = SQUAD_VOCAB_FILE
    FLAGS.input_meta_data_path = SQUAD_FULL_INPUT_META_DATA_PATH
    FLAGS.bert_config_file = MODEL_CONFIG_FILE_PATH
    FLAGS.init_checkpoint = PRETRAINED_CHECKPOINT_PATH
    FLAGS.num_train_epochs = 2
419
    FLAGS.steps_per_loop = 100
420

421
  @benchmark_wrappers.enable_runtime_flags
422
423
424
  def _run_and_report_benchmark(self,
                                use_ds=True,
                                run_eagerly=False):
425
    """Runs the benchmark and reports various metrics."""
426
    start_time_sec = time.time()
427
    self._train_squad(use_ds=use_ds, run_eagerly=run_eagerly)
428
429
430
431
432
433
434
435
436
    self._evaluate_squad()
    wall_time_sec = time.time() - start_time_sec

    summary = self._read_training_summary_from_file()
    summary['eval_metrics'] = self.eval_metrics

    super(BertSquadAccuracy, self)._report_benchmark(
        stats=summary,
        wall_time_sec=wall_time_sec,
437
        min_accuracy=0.900,
438
        max_accuracy=0.920)
439

440
441
442
443
444
445
446
447
448
449
  def benchmark_1_gpu_eager(self):
    """Tests BERT SQuAD model accuracy with 1 GPU with eager execution."""

    self._setup()
    self.num_gpus = 1
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_squad_eager')
    FLAGS.train_batch_size = 4

    self._run_and_report_benchmark(use_ds=False, run_eagerly=True)

450
451
  def benchmark_8_gpu(self):
    """Tests BERT SQuAD model accuracy with 8 GPUs."""
davidmochen's avatar
davidmochen committed
452
453
454
455

    self._setup()
    self.num_gpus = 8
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_squad')
456
    FLAGS.train_batch_size = 24
457
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
davidmochen's avatar
davidmochen committed
458

459
    self._run_and_report_benchmark()
davidmochen's avatar
davidmochen committed
460

461
462
463
464
465
466
467
468
469
  def benchmark_8_gpu_fp16(self):
    """Tests BERT SQuAD model accuracy with 8 GPUs and FP16."""

    self._setup()
    self.num_gpus = 8
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_squad_fp16')
    FLAGS.train_batch_size = 32
    FLAGS.dtype = 'fp16'
    FLAGS.loss_scale = 'dynamic'
470
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
471
472
473

    self._run_and_report_benchmark()

474
475
476
477
478
479
480
  def benchmark_8_gpu_xla(self):
    """Tests BERT SQuAD model accuracy with 8 GPUs."""

    self._setup()
    self.num_gpus = 8
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_squad_xla')
    FLAGS.train_batch_size = 32
481
    FLAGS.enable_xla = True
482
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
483

484
    self._run_and_report_benchmark()
485

David Chen's avatar
David Chen committed
486
487
488
489
490
491
492
493
494
  def benchmark_2x2_tpu(self):
    """Tests BERT SQuAD model accuracy with 2x2 TPU."""

    self._setup()
    FLAGS.model_dir = self._get_model_dir('benchmark_2x2_tpu')
    FLAGS.train_batch_size = 48

    self._run_and_report_benchmark()

davidmochen's avatar
davidmochen committed
495

496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
class BertSquadMultiWorkerAccuracy(BertSquadBenchmarkBase):
  """BERT SQuAD distributed accuracy tests with multiple workers."""

  def __init__(self, output_dir=None, tpu=None, **kwargs):
    super(BertSquadMultiWorkerAccuracy, self).__init__(
        output_dir=output_dir, tpu=tpu)

  def _setup(self):
    """Sets up the benchmark and SQuAD flags."""
    super(BertSquadMultiWorkerAccuracy, self)._setup()
    FLAGS.train_data_path = SQUAD_TRAIN_DATA_PATH
    FLAGS.predict_file = SQUAD_PREDICT_FILE
    FLAGS.vocab_file = SQUAD_VOCAB_FILE
    FLAGS.input_meta_data_path = SQUAD_FULL_INPUT_META_DATA_PATH
    FLAGS.bert_config_file = MODEL_CONFIG_FILE_PATH
    FLAGS.init_checkpoint = PRETRAINED_CHECKPOINT_PATH
    FLAGS.num_train_epochs = 2
513
    FLAGS.steps_per_loop = 100
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552

  @benchmark_wrappers.enable_runtime_flags
  def _run_and_report_benchmark(self,
                                use_ds=True,
                                run_eagerly=False):
    """Runs the benchmark and reports various metrics."""
    start_time_sec = time.time()
    self._train_squad(use_ds=use_ds, run_eagerly=run_eagerly)
    self._evaluate_squad()
    wall_time_sec = time.time() - start_time_sec

    summary = self._read_training_summary_from_file()
    summary['eval_metrics'] = self.eval_metrics

    super(BertSquadMultiWorkerAccuracy, self)._report_benchmark(
        stats=summary,
        wall_time_sec=wall_time_sec,
        min_accuracy=0.900,
        max_accuracy=0.920)

  def _benchmark_common(self, num_workers, all_reduce_alg):
    """Common to all benchmarks in this class."""
    self._setup()

    num_gpus = 8
    FLAGS.num_gpus = num_gpus
    FLAGS.dtype = 'fp16'
    FLAGS.enable_xla = False
    FLAGS.distribution_strategy = 'multi_worker_mirrored'
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
    FLAGS.datasets_num_private_threads = 32
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_8_gpu_{}_worker_fp16_{}_tweaked'.format(
            num_workers, all_reduce_alg))
    FLAGS.train_batch_size = 4 * num_gpus * num_workers
    FLAGS.all_reduce_alg = all_reduce_alg

    self._run_and_report_benchmark()

Yanhui Liang's avatar
Yanhui Liang committed
553
554
555
556
557
558
559
560
  def benchmark_eager_8_gpu_2_workers_fp16_ring_tweaked(self):
    """8 GPUs per worker, 2 workers, fp16, ring all-reduce."""
    self._benchmark_common(num_workers=2, all_reduce_alg='ring')

  def benchmark_eager_8_gpu_2_workers_fp16_nccl_tweaked(self):
    """8 GPUs per worker, 2 workers, fp16, nccl all-reduce."""
    self._benchmark_common(num_workers=2, all_reduce_alg='nccl')

561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
  def benchmark_8_gpu_8_workers_fp16_ring_tweaked(self):
    """8 GPUs per worker, 8 workers, fp16, ring all-reduce."""
    self._benchmark_common(num_workers=8, all_reduce_alg='ring')

  def benchmark_8_gpu_8_workers_fp16_nccl_tweaked(self):
    """8 GPUs per worker, 8 workers, fp16, nccl all-reduce."""
    self._benchmark_common(num_workers=8, all_reduce_alg='nccl')


class BertSquadMultiWorkerBenchmark(BertSquadBenchmarkBase):
  """BERT SQuAD distributed benchmark tests with multiple workers."""

  def __init__(self, output_dir=TMP_DIR, tpu=None, **kwargs):
    super(BertSquadMultiWorkerBenchmark, self).__init__(
        output_dir=output_dir, tpu=tpu)

  def _setup(self):
    """Sets up the benchmark and SQuAD flags."""
    super(BertSquadMultiWorkerBenchmark, self)._setup()
    FLAGS.train_data_path = SQUAD_TRAIN_DATA_PATH
    FLAGS.predict_file = SQUAD_PREDICT_FILE
    FLAGS.vocab_file = SQUAD_VOCAB_FILE
583
    FLAGS.input_meta_data_path = SQUAD_FULL_INPUT_META_DATA_PATH
584
585
    FLAGS.bert_config_file = MODEL_CONFIG_FILE_PATH
    FLAGS.num_train_epochs = 1
586
    FLAGS.steps_per_loop = 100
587
588
589
590
591
592

  @benchmark_wrappers.enable_runtime_flags
  def _run_and_report_benchmark(self,
                                use_ds=True,
                                run_eagerly=False):
    """Runs the benchmark and reports various metrics."""
593
594
595
596
    if FLAGS.train_batch_size <= 4 * 8:
      FLAGS.input_meta_data_path = SQUAD_LONG_INPUT_META_DATA_PATH
    else:
      FLAGS.input_meta_data_path = SQUAD_FULL_INPUT_META_DATA_PATH
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
    start_time_sec = time.time()
    self._train_squad(use_ds=use_ds, run_eagerly=run_eagerly)
    wall_time_sec = time.time() - start_time_sec

    summary = self._read_training_summary_from_file()
    summary['start_time_sec'] = start_time_sec

    super(BertSquadMultiWorkerBenchmark, self)._report_benchmark(
        stats=summary,
        wall_time_sec=wall_time_sec,
        min_accuracy=0,
        max_accuracy=1)

  def _benchmark_common(self, num_workers, all_reduce_alg):
    """Common to all benchmarks in this class."""
    self._setup()

    num_gpus = 8
    FLAGS.num_gpus = num_gpus
    FLAGS.dtype = 'fp16'
    FLAGS.enable_xla = False
    FLAGS.distribution_strategy = 'multi_worker_mirrored'
    FLAGS.tf_gpu_thread_mode = 'gpu_private'
    FLAGS.datasets_num_private_threads = 32
    FLAGS.model_dir = self._get_model_dir(
        'benchmark_8_gpu_{}_worker_fp16_{}_tweaked'.format(
            num_workers, all_reduce_alg))
    FLAGS.train_batch_size = 4 * num_gpus * num_workers
    FLAGS.all_reduce_alg = all_reduce_alg

    self._run_and_report_benchmark()

  def benchmark_8_gpu_1_worker_fp16_ring_tweaked(self):
    """8 GPUs per worker, 1 worker, fp16, ring all-reduce."""
    self._benchmark_common(num_workers=1, all_reduce_alg='ring')

  def benchmark_8_gpu_1_worker_fp16_nccl_tweaked(self):
    """8 GPUs per worker, 1 worker, fp16, nccl all-reduce."""
    self._benchmark_common(num_workers=1, all_reduce_alg='nccl')

  def benchmark_8_gpu_2_workers_fp16_ring_tweaked(self):
    """8 GPUs per worker, 2 workers, fp16, ring all-reduce."""
    self._benchmark_common(num_workers=2, all_reduce_alg='ring')

  def benchmark_8_gpu_2_workers_fp16_nccl_tweaked(self):
    """8 GPUs per worker, 2 workers, fp16, nccl all-reduce."""
    self._benchmark_common(num_workers=2, all_reduce_alg='nccl')

  def benchmark_8_gpu_8_workers_fp16_ring_tweaked(self):
    """8 GPUs per worker, 8 workers, fp16, ring all-reduce."""
    self._benchmark_common(num_workers=8, all_reduce_alg='ring')

  def benchmark_8_gpu_8_workers_fp16_nccl_tweaked(self):
    """8 GPUs per worker, 8 workers, fp16, nccl all-reduce."""
    self._benchmark_common(num_workers=8, all_reduce_alg='nccl')


davidmochen's avatar
davidmochen committed
654
655
if __name__ == '__main__':
  tf.test.main()