image_classification.py 13.9 KB
Newer Older
Yeqing Li's avatar
Yeqing Li committed
1
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
Abdullah Rashwan's avatar
Abdullah Rashwan committed
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Yeqing Li's avatar
Yeqing Li committed
14
15

# Lint as: python3
Abdullah Rashwan's avatar
Abdullah Rashwan committed
16
17
"""Image classification configuration definition."""
import os
Abdullah Rashwan's avatar
Abdullah Rashwan committed
18
from typing import List, Optional
Abdullah Rashwan's avatar
Abdullah Rashwan committed
19
import dataclasses
20
from official.core import config_definitions as cfg
Abdullah Rashwan's avatar
Abdullah Rashwan committed
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
from official.core import exp_factory
from official.modeling import hyperparams
from official.modeling import optimization
from official.vision.beta.configs import backbones
from official.vision.beta.configs import common


@dataclasses.dataclass
class DataConfig(cfg.DataConfig):
  """Input config for training."""
  input_path: str = ''
  global_batch_size: int = 0
  is_training: bool = True
  dtype: str = 'float32'
  shuffle_buffer_size: int = 10000
  cycle_length: int = 10
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
37
  aug_policy: Optional[str] = None  # None, 'autoaug', or 'randaug'
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
38
  randaug_magnitude: Optional[int] = 10
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
39
  file_type: str = 'tfrecord'
Fan Yang's avatar
Fan Yang committed
40
41
  image_field_key: str = 'image/encoded'
  label_field_key: str = 'image/class/label'
Abdullah Rashwan's avatar
Abdullah Rashwan committed
42
43
44
45


@dataclasses.dataclass
class ImageClassificationModel(hyperparams.Config):
Pengchong Jin's avatar
Pengchong Jin committed
46
  """The model config."""
Abdullah Rashwan's avatar
Abdullah Rashwan committed
47
48
49
50
51
  num_classes: int = 0
  input_size: List[int] = dataclasses.field(default_factory=list)
  backbone: backbones.Backbone = backbones.Backbone(
      type='resnet', resnet=backbones.ResNet())
  dropout_rate: float = 0.0
Pengchong Jin's avatar
Pengchong Jin committed
52
53
  norm_activation: common.NormActivation = common.NormActivation(
      use_sync_bn=False)
Abdullah Rashwan's avatar
Abdullah Rashwan committed
54
55
56
57
58
59
60
61
62
63
64
  # Adds a BatchNormalization layer pre-GlobalAveragePooling in classification
  add_head_batch_norm: bool = False


@dataclasses.dataclass
class Losses(hyperparams.Config):
  one_hot: bool = True
  label_smoothing: float = 0.0
  l2_weight_decay: float = 0.0


Pengchong Jin's avatar
Pengchong Jin committed
65
66
67
68
69
@dataclasses.dataclass
class Evaluation(hyperparams.Config):
  top_k: int = 5


Abdullah Rashwan's avatar
Abdullah Rashwan committed
70
71
@dataclasses.dataclass
class ImageClassificationTask(cfg.TaskConfig):
Pengchong Jin's avatar
Pengchong Jin committed
72
  """The task config."""
Abdullah Rashwan's avatar
Abdullah Rashwan committed
73
74
75
76
  model: ImageClassificationModel = ImageClassificationModel()
  train_data: DataConfig = DataConfig(is_training=True)
  validation_data: DataConfig = DataConfig(is_training=False)
  losses: Losses = Losses()
Pengchong Jin's avatar
Pengchong Jin committed
77
  evaluation: Evaluation = Evaluation()
Abdullah Rashwan's avatar
Abdullah Rashwan committed
78
79
  init_checkpoint: Optional[str] = None
  init_checkpoint_modules: str = 'all'  # all or backbone
Fan Yang's avatar
Fan Yang committed
80
81
  model_output_keys: Optional[List[int]] = dataclasses.field(
      default_factory=list)
Abdullah Rashwan's avatar
Abdullah Rashwan committed
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111


@exp_factory.register_config_factory('image_classification')
def image_classification() -> cfg.ExperimentConfig:
  """Image classification general."""
  return cfg.ExperimentConfig(
      task=ImageClassificationTask(),
      trainer=cfg.TrainerConfig(),
      restrictions=[
          'task.train_data.is_training != None',
          'task.validation_data.is_training != None'
      ])


IMAGENET_TRAIN_EXAMPLES = 1281167
IMAGENET_VAL_EXAMPLES = 50000
IMAGENET_INPUT_PATH_BASE = 'imagenet-2012-tfrecord'


@exp_factory.register_config_factory('resnet_imagenet')
def image_classification_imagenet() -> cfg.ExperimentConfig:
  """Image classification on imagenet with resnet."""
  train_batch_size = 4096
  eval_batch_size = 4096
  steps_per_epoch = IMAGENET_TRAIN_EXAMPLES // train_batch_size
  config = cfg.ExperimentConfig(
      task=ImageClassificationTask(
          model=ImageClassificationModel(
              num_classes=1001,
              input_size=[224, 224, 3],
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
112
113
              backbone=backbones.Backbone(
                  type='resnet', resnet=backbones.ResNet(model_id=50)),
Abdullah Rashwan's avatar
Abdullah Rashwan committed
114
              norm_activation=common.NormActivation(
Pengchong Jin's avatar
Pengchong Jin committed
115
                  norm_momentum=0.9, norm_epsilon=1e-5, use_sync_bn=False)),
Abdullah Rashwan's avatar
Abdullah Rashwan committed
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
          losses=Losses(l2_weight_decay=1e-4),
          train_data=DataConfig(
              input_path=os.path.join(IMAGENET_INPUT_PATH_BASE, 'train*'),
              is_training=True,
              global_batch_size=train_batch_size),
          validation_data=DataConfig(
              input_path=os.path.join(IMAGENET_INPUT_PATH_BASE, 'valid*'),
              is_training=False,
              global_batch_size=eval_batch_size)),
      trainer=cfg.TrainerConfig(
          steps_per_loop=steps_per_epoch,
          summary_interval=steps_per_epoch,
          checkpoint_interval=steps_per_epoch,
          train_steps=90 * steps_per_epoch,
          validation_steps=IMAGENET_VAL_EXAMPLES // eval_batch_size,
          validation_interval=steps_per_epoch,
          optimizer_config=optimization.OptimizationConfig({
              'optimizer': {
                  'type': 'sgd',
                  'sgd': {
                      'momentum': 0.9
                  }
              },
              'learning_rate': {
                  'type': 'stepwise',
                  'stepwise': {
                      'boundaries': [
                          30 * steps_per_epoch, 60 * steps_per_epoch,
                          80 * steps_per_epoch
                      ],
                      'values': [
147
148
149
150
                          0.1 * train_batch_size / 256,
                          0.01 * train_batch_size / 256,
                          0.001 * train_batch_size / 256,
                          0.0001 * train_batch_size / 256,
Abdullah Rashwan's avatar
Abdullah Rashwan committed
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
                      ]
                  }
              },
              'warmup': {
                  'type': 'linear',
                  'linear': {
                      'warmup_steps': 5 * steps_per_epoch,
                      'warmup_learning_rate': 0
                  }
              }
          })),
      restrictions=[
          'task.train_data.is_training != None',
          'task.validation_data.is_training != None'
      ])

  return config


A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
@exp_factory.register_config_factory('resnet_rs_imagenet')
def image_classification_imagenet_resnetrs() -> cfg.ExperimentConfig:
  """Image classification on imagenet with resnet-rs."""
  train_batch_size = 4096
  eval_batch_size = 4096
  steps_per_epoch = IMAGENET_TRAIN_EXAMPLES // train_batch_size
  config = cfg.ExperimentConfig(
      task=ImageClassificationTask(
          model=ImageClassificationModel(
              num_classes=1001,
              input_size=[160, 160, 3],
              backbone=backbones.Backbone(
                  type='resnet',
                  resnet=backbones.ResNet(
                      model_id=50,
                      stem_type='v1',
                      resnetd_shortcut=True,
                      replace_stem_max_pool=True,
                      se_ratio=0.25,
                      stochastic_depth_drop_rate=0.0)),
              dropout_rate=0.25,
              norm_activation=common.NormActivation(
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
192
193
194
195
                  norm_momentum=0.0,
                  norm_epsilon=1e-5,
                  use_sync_bn=False,
                  activation='swish')),
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
196
197
198
199
200
          losses=Losses(l2_weight_decay=4e-5, label_smoothing=0.1),
          train_data=DataConfig(
              input_path=os.path.join(IMAGENET_INPUT_PATH_BASE, 'train*'),
              is_training=True,
              global_batch_size=train_batch_size,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
201
202
              aug_policy='randaug',
              randaug_magnitude=10),
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
203
204
205
206
207
208
209
210
          validation_data=DataConfig(
              input_path=os.path.join(IMAGENET_INPUT_PATH_BASE, 'valid*'),
              is_training=False,
              global_batch_size=eval_batch_size)),
      trainer=cfg.TrainerConfig(
          steps_per_loop=steps_per_epoch,
          summary_interval=steps_per_epoch,
          checkpoint_interval=steps_per_epoch,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
211
          train_steps=350 * steps_per_epoch,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
          validation_steps=IMAGENET_VAL_EXAMPLES // eval_batch_size,
          validation_interval=steps_per_epoch,
          optimizer_config=optimization.OptimizationConfig({
              'optimizer': {
                  'type': 'sgd',
                  'sgd': {
                      'momentum': 0.9
                  }
              },
              'ema': {
                  'average_decay': 0.9999
              },
              'learning_rate': {
                  'type': 'cosine',
                  'cosine': {
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
227
228
                      'initial_learning_rate': 1.6,
                      'decay_steps': 350 * steps_per_epoch
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
                  }
              },
              'warmup': {
                  'type': 'linear',
                  'linear': {
                      'warmup_steps': 5 * steps_per_epoch,
                      'warmup_learning_rate': 0
                  }
              }
          })),
      restrictions=[
          'task.train_data.is_training != None',
          'task.validation_data.is_training != None'
      ])
  return config


Abdullah Rashwan's avatar
Abdullah Rashwan committed
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
@exp_factory.register_config_factory('revnet_imagenet')
def image_classification_imagenet_revnet() -> cfg.ExperimentConfig:
  """Returns a revnet config for image classification on imagenet."""
  train_batch_size = 4096
  eval_batch_size = 4096
  steps_per_epoch = IMAGENET_TRAIN_EXAMPLES // train_batch_size

  config = cfg.ExperimentConfig(
      task=ImageClassificationTask(
          model=ImageClassificationModel(
              num_classes=1001,
              input_size=[224, 224, 3],
              backbone=backbones.Backbone(
                  type='revnet', revnet=backbones.RevNet(model_id=56)),
              norm_activation=common.NormActivation(
Pengchong Jin's avatar
Pengchong Jin committed
261
                  norm_momentum=0.9, norm_epsilon=1e-5, use_sync_bn=False),
Abdullah Rashwan's avatar
Abdullah Rashwan committed
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
              add_head_batch_norm=True),
          losses=Losses(l2_weight_decay=1e-4),
          train_data=DataConfig(
              input_path=os.path.join(IMAGENET_INPUT_PATH_BASE, 'train*'),
              is_training=True,
              global_batch_size=train_batch_size),
          validation_data=DataConfig(
              input_path=os.path.join(IMAGENET_INPUT_PATH_BASE, 'valid*'),
              is_training=False,
              global_batch_size=eval_batch_size)),
      trainer=cfg.TrainerConfig(
          steps_per_loop=steps_per_epoch,
          summary_interval=steps_per_epoch,
          checkpoint_interval=steps_per_epoch,
          train_steps=90 * steps_per_epoch,
          validation_steps=IMAGENET_VAL_EXAMPLES // eval_batch_size,
          validation_interval=steps_per_epoch,
          optimizer_config=optimization.OptimizationConfig({
              'optimizer': {
                  'type': 'sgd',
                  'sgd': {
                      'momentum': 0.9
                  }
              },
              'learning_rate': {
                  'type': 'stepwise',
                  'stepwise': {
                      'boundaries': [
                          30 * steps_per_epoch, 60 * steps_per_epoch,
                          80 * steps_per_epoch
                      ],
                      'values': [0.8, 0.08, 0.008, 0.0008]
                  }
              },
              'warmup': {
                  'type': 'linear',
                  'linear': {
                      'warmup_steps': 5 * steps_per_epoch,
                      'warmup_learning_rate': 0
                  }
              }
          })),
      restrictions=[
          'task.train_data.is_training != None',
          'task.validation_data.is_training != None'
      ])

  return config
310
311
312
313
314


@exp_factory.register_config_factory('mobilenet_imagenet')
def image_classification_imagenet_mobilenet() -> cfg.ExperimentConfig:
  """Image classification on imagenet with mobilenet."""
315
316
  train_batch_size = 4096
  eval_batch_size = 4096
317
318
319
320
321
322
323
324
325
326
  steps_per_epoch = IMAGENET_TRAIN_EXAMPLES // train_batch_size
  config = cfg.ExperimentConfig(
      task=ImageClassificationTask(
          model=ImageClassificationModel(
              num_classes=1001,
              dropout_rate=0.2,
              input_size=[224, 224, 3],
              backbone=backbones.Backbone(
                  type='mobilenet',
                  mobilenet=backbones.MobileNet(
327
                      model_id='MobileNetV2', filter_size_scale=1.0)),
328
              norm_activation=common.NormActivation(
Pengchong Jin's avatar
Pengchong Jin committed
329
                  norm_momentum=0.997, norm_epsilon=1e-3, use_sync_bn=False)),
330
          losses=Losses(l2_weight_decay=1e-5, label_smoothing=0.1),
331
332
333
334
335
336
337
338
339
340
341
342
          train_data=DataConfig(
              input_path=os.path.join(IMAGENET_INPUT_PATH_BASE, 'train*'),
              is_training=True,
              global_batch_size=train_batch_size),
          validation_data=DataConfig(
              input_path=os.path.join(IMAGENET_INPUT_PATH_BASE, 'valid*'),
              is_training=False,
              global_batch_size=eval_batch_size)),
      trainer=cfg.TrainerConfig(
          steps_per_loop=steps_per_epoch,
          summary_interval=steps_per_epoch,
          checkpoint_interval=steps_per_epoch,
343
          train_steps=500 * steps_per_epoch,
344
345
346
347
348
349
          validation_steps=IMAGENET_VAL_EXAMPLES // eval_batch_size,
          validation_interval=steps_per_epoch,
          optimizer_config=optimization.OptimizationConfig({
              'optimizer': {
                  'type': 'rmsprop',
                  'rmsprop': {
350
                      'rho': 0.9,
351
352
353
354
355
356
357
                      'momentum': 0.9,
                      'epsilon': 0.002,
                  }
              },
              'learning_rate': {
                  'type': 'exponential',
                  'exponential': {
358
359
360
361
362
363
364
365
                      'initial_learning_rate':
                          0.008 * (train_batch_size // 128),
                      'decay_steps':
                          int(2.5 * steps_per_epoch),
                      'decay_rate':
                          0.98,
                      'staircase':
                          True
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
                  }
              },
              'warmup': {
                  'type': 'linear',
                  'linear': {
                      'warmup_steps': 5 * steps_per_epoch,
                      'warmup_learning_rate': 0
                  }
              },
          })),
      restrictions=[
          'task.train_data.is_training != None',
          'task.validation_data.is_training != None'
      ])

  return config