image_classification.py 10.9 KB
Newer Older
Abdullah Rashwan's avatar
Abdullah Rashwan committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
# Lint as: python3
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Image classification configuration definition."""
import os
Abdullah Rashwan's avatar
Abdullah Rashwan committed
18
from typing import List, Optional
Abdullah Rashwan's avatar
Abdullah Rashwan committed
19
import dataclasses
20
from official.core import config_definitions as cfg
Abdullah Rashwan's avatar
Abdullah Rashwan committed
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
from official.core import exp_factory
from official.modeling import hyperparams
from official.modeling import optimization
from official.vision.beta.configs import backbones
from official.vision.beta.configs import common


@dataclasses.dataclass
class DataConfig(cfg.DataConfig):
  """Input config for training."""
  input_path: str = ''
  global_batch_size: int = 0
  is_training: bool = True
  dtype: str = 'float32'
  shuffle_buffer_size: int = 10000
  cycle_length: int = 10


@dataclasses.dataclass
class ImageClassificationModel(hyperparams.Config):
Pengchong Jin's avatar
Pengchong Jin committed
41
  """The model config."""
Abdullah Rashwan's avatar
Abdullah Rashwan committed
42
43
44
45
46
  num_classes: int = 0
  input_size: List[int] = dataclasses.field(default_factory=list)
  backbone: backbones.Backbone = backbones.Backbone(
      type='resnet', resnet=backbones.ResNet())
  dropout_rate: float = 0.0
Pengchong Jin's avatar
Pengchong Jin committed
47
48
  norm_activation: common.NormActivation = common.NormActivation(
      use_sync_bn=False)
Abdullah Rashwan's avatar
Abdullah Rashwan committed
49
50
51
52
53
54
55
56
57
58
59
  # Adds a BatchNormalization layer pre-GlobalAveragePooling in classification
  add_head_batch_norm: bool = False


@dataclasses.dataclass
class Losses(hyperparams.Config):
  one_hot: bool = True
  label_smoothing: float = 0.0
  l2_weight_decay: float = 0.0


Pengchong Jin's avatar
Pengchong Jin committed
60
61
62
63
64
@dataclasses.dataclass
class Evaluation(hyperparams.Config):
  top_k: int = 5


Abdullah Rashwan's avatar
Abdullah Rashwan committed
65
66
@dataclasses.dataclass
class ImageClassificationTask(cfg.TaskConfig):
Pengchong Jin's avatar
Pengchong Jin committed
67
  """The task config."""
Abdullah Rashwan's avatar
Abdullah Rashwan committed
68
69
70
71
  model: ImageClassificationModel = ImageClassificationModel()
  train_data: DataConfig = DataConfig(is_training=True)
  validation_data: DataConfig = DataConfig(is_training=False)
  losses: Losses = Losses()
Pengchong Jin's avatar
Pengchong Jin committed
72
  evaluation: Evaluation = Evaluation()
Abdullah Rashwan's avatar
Abdullah Rashwan committed
73
74
  init_checkpoint: Optional[str] = None
  init_checkpoint_modules: str = 'all'  # all or backbone
Abdullah Rashwan's avatar
Abdullah Rashwan committed
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104


@exp_factory.register_config_factory('image_classification')
def image_classification() -> cfg.ExperimentConfig:
  """Image classification general."""
  return cfg.ExperimentConfig(
      task=ImageClassificationTask(),
      trainer=cfg.TrainerConfig(),
      restrictions=[
          'task.train_data.is_training != None',
          'task.validation_data.is_training != None'
      ])


IMAGENET_TRAIN_EXAMPLES = 1281167
IMAGENET_VAL_EXAMPLES = 50000
IMAGENET_INPUT_PATH_BASE = 'imagenet-2012-tfrecord'


@exp_factory.register_config_factory('resnet_imagenet')
def image_classification_imagenet() -> cfg.ExperimentConfig:
  """Image classification on imagenet with resnet."""
  train_batch_size = 4096
  eval_batch_size = 4096
  steps_per_epoch = IMAGENET_TRAIN_EXAMPLES // train_batch_size
  config = cfg.ExperimentConfig(
      task=ImageClassificationTask(
          model=ImageClassificationModel(
              num_classes=1001,
              input_size=[224, 224, 3],
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
105
106
              backbone=backbones.Backbone(
                  type='resnet', resnet=backbones.ResNet(model_id=50)),
Abdullah Rashwan's avatar
Abdullah Rashwan committed
107
              norm_activation=common.NormActivation(
Pengchong Jin's avatar
Pengchong Jin committed
108
                  norm_momentum=0.9, norm_epsilon=1e-5, use_sync_bn=False)),
Abdullah Rashwan's avatar
Abdullah Rashwan committed
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
          losses=Losses(l2_weight_decay=1e-4),
          train_data=DataConfig(
              input_path=os.path.join(IMAGENET_INPUT_PATH_BASE, 'train*'),
              is_training=True,
              global_batch_size=train_batch_size),
          validation_data=DataConfig(
              input_path=os.path.join(IMAGENET_INPUT_PATH_BASE, 'valid*'),
              is_training=False,
              global_batch_size=eval_batch_size)),
      trainer=cfg.TrainerConfig(
          steps_per_loop=steps_per_epoch,
          summary_interval=steps_per_epoch,
          checkpoint_interval=steps_per_epoch,
          train_steps=90 * steps_per_epoch,
          validation_steps=IMAGENET_VAL_EXAMPLES // eval_batch_size,
          validation_interval=steps_per_epoch,
          optimizer_config=optimization.OptimizationConfig({
              'optimizer': {
                  'type': 'sgd',
                  'sgd': {
                      'momentum': 0.9
                  }
              },
              'learning_rate': {
                  'type': 'stepwise',
                  'stepwise': {
                      'boundaries': [
                          30 * steps_per_epoch, 60 * steps_per_epoch,
                          80 * steps_per_epoch
                      ],
                      'values': [
140
141
142
143
                          0.1 * train_batch_size / 256,
                          0.01 * train_batch_size / 256,
                          0.001 * train_batch_size / 256,
                          0.0001 * train_batch_size / 256,
Abdullah Rashwan's avatar
Abdullah Rashwan committed
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
                      ]
                  }
              },
              'warmup': {
                  'type': 'linear',
                  'linear': {
                      'warmup_steps': 5 * steps_per_epoch,
                      'warmup_learning_rate': 0
                  }
              }
          })),
      restrictions=[
          'task.train_data.is_training != None',
          'task.validation_data.is_training != None'
      ])

  return config


@exp_factory.register_config_factory('revnet_imagenet')
def image_classification_imagenet_revnet() -> cfg.ExperimentConfig:
  """Returns a revnet config for image classification on imagenet."""
  train_batch_size = 4096
  eval_batch_size = 4096
  steps_per_epoch = IMAGENET_TRAIN_EXAMPLES // train_batch_size

  config = cfg.ExperimentConfig(
      task=ImageClassificationTask(
          model=ImageClassificationModel(
              num_classes=1001,
              input_size=[224, 224, 3],
              backbone=backbones.Backbone(
                  type='revnet', revnet=backbones.RevNet(model_id=56)),
              norm_activation=common.NormActivation(
Pengchong Jin's avatar
Pengchong Jin committed
178
                  norm_momentum=0.9, norm_epsilon=1e-5, use_sync_bn=False),
Abdullah Rashwan's avatar
Abdullah Rashwan committed
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
              add_head_batch_norm=True),
          losses=Losses(l2_weight_decay=1e-4),
          train_data=DataConfig(
              input_path=os.path.join(IMAGENET_INPUT_PATH_BASE, 'train*'),
              is_training=True,
              global_batch_size=train_batch_size),
          validation_data=DataConfig(
              input_path=os.path.join(IMAGENET_INPUT_PATH_BASE, 'valid*'),
              is_training=False,
              global_batch_size=eval_batch_size)),
      trainer=cfg.TrainerConfig(
          steps_per_loop=steps_per_epoch,
          summary_interval=steps_per_epoch,
          checkpoint_interval=steps_per_epoch,
          train_steps=90 * steps_per_epoch,
          validation_steps=IMAGENET_VAL_EXAMPLES // eval_batch_size,
          validation_interval=steps_per_epoch,
          optimizer_config=optimization.OptimizationConfig({
              'optimizer': {
                  'type': 'sgd',
                  'sgd': {
                      'momentum': 0.9
                  }
              },
              'learning_rate': {
                  'type': 'stepwise',
                  'stepwise': {
                      'boundaries': [
                          30 * steps_per_epoch, 60 * steps_per_epoch,
                          80 * steps_per_epoch
                      ],
                      'values': [0.8, 0.08, 0.008, 0.0008]
                  }
              },
              'warmup': {
                  'type': 'linear',
                  'linear': {
                      'warmup_steps': 5 * steps_per_epoch,
                      'warmup_learning_rate': 0
                  }
              }
          })),
      restrictions=[
          'task.train_data.is_training != None',
          'task.validation_data.is_training != None'
      ])

  return config
227
228
229
230
231


@exp_factory.register_config_factory('mobilenet_imagenet')
def image_classification_imagenet_mobilenet() -> cfg.ExperimentConfig:
  """Image classification on imagenet with mobilenet."""
232
233
  train_batch_size = 4096
  eval_batch_size = 4096
234
235
236
237
238
239
240
241
242
243
  steps_per_epoch = IMAGENET_TRAIN_EXAMPLES // train_batch_size
  config = cfg.ExperimentConfig(
      task=ImageClassificationTask(
          model=ImageClassificationModel(
              num_classes=1001,
              dropout_rate=0.2,
              input_size=[224, 224, 3],
              backbone=backbones.Backbone(
                  type='mobilenet',
                  mobilenet=backbones.MobileNet(
244
                      model_id='MobileNetV2', filter_size_scale=1.0)),
245
              norm_activation=common.NormActivation(
Pengchong Jin's avatar
Pengchong Jin committed
246
                  norm_momentum=0.997, norm_epsilon=1e-3, use_sync_bn=False)),
247
          losses=Losses(l2_weight_decay=1e-5, label_smoothing=0.1),
248
249
250
251
252
253
254
255
256
257
258
259
          train_data=DataConfig(
              input_path=os.path.join(IMAGENET_INPUT_PATH_BASE, 'train*'),
              is_training=True,
              global_batch_size=train_batch_size),
          validation_data=DataConfig(
              input_path=os.path.join(IMAGENET_INPUT_PATH_BASE, 'valid*'),
              is_training=False,
              global_batch_size=eval_batch_size)),
      trainer=cfg.TrainerConfig(
          steps_per_loop=steps_per_epoch,
          summary_interval=steps_per_epoch,
          checkpoint_interval=steps_per_epoch,
260
          train_steps=500 * steps_per_epoch,
261
262
263
264
265
266
          validation_steps=IMAGENET_VAL_EXAMPLES // eval_batch_size,
          validation_interval=steps_per_epoch,
          optimizer_config=optimization.OptimizationConfig({
              'optimizer': {
                  'type': 'rmsprop',
                  'rmsprop': {
267
                      'rho': 0.9,
268
269
270
271
272
273
274
                      'momentum': 0.9,
                      'epsilon': 0.002,
                  }
              },
              'learning_rate': {
                  'type': 'exponential',
                  'exponential': {
275
276
277
278
279
280
281
282
                      'initial_learning_rate':
                          0.008 * (train_batch_size // 128),
                      'decay_steps':
                          int(2.5 * steps_per_epoch),
                      'decay_rate':
                          0.98,
                      'staircase':
                          True
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
                  }
              },
              'warmup': {
                  'type': 'linear',
                  'linear': {
                      'warmup_steps': 5 * steps_per_epoch,
                      'warmup_learning_rate': 0
                  }
              },
          })),
      restrictions=[
          'task.train_data.is_training != None',
          'task.validation_data.is_training != None'
      ])

  return config