Skip to content
GitLab
Menu
Projects
Groups
Snippets
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Contribute to GitLab
Sign in / Register
Toggle navigation
Menu
Open sidebar
ModelZoo
ResNet50_tensorflow
Commits
d6fe2516
Commit
d6fe2516
authored
Oct 12, 2020
by
Hongkun Yu
Committed by
A. Unique TensorFlower
Oct 12, 2020
Browse files
Move core configs to core/ folder. Leave the configs for legacy models.
PiperOrigin-RevId: 336795303
parent
caa61e1b
Changes
28
Hide whitespace changes
Inline
Side-by-side
Showing
20 changed files
with
250 additions
and
232 deletions
+250
-232
official/core/base_trainer.py
official/core/base_trainer.py
+1
-1
official/core/base_trainer_test.py
official/core/base_trainer_test.py
+1
-1
official/core/config_definitions.py
official/core/config_definitions.py
+227
-0
official/core/exp_factory.py
official/core/exp_factory.py
+1
-1
official/core/input_reader.py
official/core/input_reader.py
+1
-1
official/core/train_lib.py
official/core/train_lib.py
+1
-1
official/core/train_utils.py
official/core/train_utils.py
+1
-1
official/modeling/hyperparams/config_definitions.py
official/modeling/hyperparams/config_definitions.py
+5
-208
official/nlp/data/data_loader_factory_test.py
official/nlp/data/data_loader_factory_test.py
+1
-1
official/nlp/data/pretrain_dataloader.py
official/nlp/data/pretrain_dataloader.py
+1
-2
official/nlp/data/question_answering_dataloader.py
official/nlp/data/question_answering_dataloader.py
+1
-2
official/nlp/data/sentence_prediction_dataloader.py
official/nlp/data/sentence_prediction_dataloader.py
+1
-2
official/nlp/data/tagging_dataloader.py
official/nlp/data/tagging_dataloader.py
+1
-2
official/nlp/data/wmt_dataloader.py
official/nlp/data/wmt_dataloader.py
+1
-2
official/nlp/tasks/electra_task.py
official/nlp/tasks/electra_task.py
+1
-1
official/nlp/tasks/masked_lm.py
official/nlp/tasks/masked_lm.py
+1
-1
official/nlp/tasks/question_answering.py
official/nlp/tasks/question_answering.py
+1
-1
official/nlp/tasks/sentence_prediction.py
official/nlp/tasks/sentence_prediction.py
+1
-1
official/nlp/tasks/tagging.py
official/nlp/tasks/tagging.py
+1
-1
official/nlp/train_ctl_continuous_finetune.py
official/nlp/train_ctl_continuous_finetune.py
+1
-2
No files found.
official/core/base_trainer.py
View file @
d6fe2516
...
...
@@ -25,9 +25,9 @@ import orbit
import
tensorflow
as
tf
from
official.core
import
base_task
from
official.core
import
config_definitions
from
official.modeling
import
optimization
from
official.modeling
import
performance
from
official.modeling.hyperparams
import
config_definitions
ExperimentConfig
=
config_definitions
.
ExperimentConfig
TrainerConfig
=
config_definitions
.
TrainerConfig
...
...
official/core/base_trainer_test.py
View file @
d6fe2516
...
...
@@ -23,8 +23,8 @@ import tensorflow as tf
from
tensorflow.python.distribute
import
combinations
from
tensorflow.python.distribute
import
strategy_combinations
from
official.core
import
base_trainer
as
trainer_lib
from
official.core
import
config_definitions
as
cfg
from
official.core
import
train_lib
from
official.modeling.hyperparams
import
config_definitions
as
cfg
from
official.utils.testing
import
mock_task
...
...
official/core/config_definitions.py
0 → 100644
View file @
d6fe2516
# Lint as: python3
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Common configuration settings."""
from
typing
import
Optional
,
Sequence
,
Union
import
dataclasses
from
official.modeling.hyperparams
import
base_config
from
official.modeling.optimization.configs
import
optimization_config
OptimizationConfig
=
optimization_config
.
OptimizationConfig
@
dataclasses
.
dataclass
class
DataConfig
(
base_config
.
Config
):
"""The base configuration for building datasets.
Attributes:
input_path: The path to the input. It can be either (1) a str indicating
a file path/pattern, or (2) a str indicating multiple file paths/patterns
separated by comma (e.g "a, b, c" or no spaces "a,b,c"), or
(3) a list of str, each of which is a file path/pattern or multiple file
paths/patterns separated by comma.
It should not be specified when the following `tfds_name` is specified.
tfds_name: The name of the tensorflow dataset (TFDS). It should not be
specified when the above `input_path` is specified.
tfds_split: A str indicating which split of the data to load from TFDS. It
is required when above `tfds_name` is specified.
global_batch_size: The global batch size across all replicas.
is_training: Whether this data is used for training or not.
drop_remainder: Whether the last batch should be dropped in the case it has
fewer than `global_batch_size` elements.
shuffle_buffer_size: The buffer size used for shuffling training data.
cache: Whether to cache dataset examples. Can be used to avoid re-reading
from disk on the second epoch. Requires significant memory overhead.
cycle_length: The number of files that will be processed concurrently when
interleaving files.
block_length: The number of consecutive elements to produce from each input
element before cycling to another input element when interleaving files.
deterministic: A boolean controlling whether determinism should be enforced.
sharding: Whether sharding is used in the input pipeline.
enable_tf_data_service: A boolean indicating whether to enable tf.data
service for the input pipeline.
tf_data_service_address: The URI of a tf.data service to offload
preprocessing onto during training. The URI should be in the format
"protocol://address", e.g. "grpc://tf-data-service:5050". It can be
overridden by `FLAGS.tf_data_service` flag in the binary.
tf_data_service_job_name: The name of the tf.data service job. This
argument makes it possible for multiple datasets to share the same job.
The default behavior is that the dataset creates anonymous, exclusively
owned jobs.
tfds_data_dir: A str specifying the directory to read/write TFDS data.
tfds_download: A bool to indicate whether to download data using TFDS.
tfds_as_supervised: A bool. When loading dataset from TFDS, if True, the
returned tf.data.Dataset will have a 2-tuple structure (input, label)
according to builder.info.supervised_keys; if False, the default, the
returned tf.data.Dataset will have a dictionary with all the features.
tfds_skip_decoding_feature: A str to indicate which features are skipped for
decoding when loading dataset from TFDS. Use comma to separate multiple
features. The main use case is to skip the image/video decoding for better
performance.
"""
input_path
:
Union
[
Sequence
[
str
],
str
]
=
""
tfds_name
:
str
=
""
tfds_split
:
str
=
""
global_batch_size
:
int
=
0
is_training
:
bool
=
None
drop_remainder
:
bool
=
True
shuffle_buffer_size
:
int
=
100
cache
:
bool
=
False
cycle_length
:
Optional
[
int
]
=
None
block_length
:
int
=
1
deterministic
:
Optional
[
bool
]
=
None
sharding
:
bool
=
True
enable_tf_data_service
:
bool
=
False
tf_data_service_address
:
Optional
[
str
]
=
None
tf_data_service_job_name
:
Optional
[
str
]
=
None
tfds_data_dir
:
str
=
""
tfds_download
:
bool
=
False
tfds_as_supervised
:
bool
=
False
tfds_skip_decoding_feature
:
str
=
""
@
dataclasses
.
dataclass
class
RuntimeConfig
(
base_config
.
Config
):
"""High-level configurations for Runtime.
These include parameters that are not directly related to the experiment,
e.g. directories, accelerator type, etc.
Attributes:
distribution_strategy: e.g. 'mirrored', 'tpu', etc.
enable_xla: Whether or not to enable XLA.
per_gpu_thread_count: thread count per GPU.
gpu_thread_mode: Whether and how the GPU device uses its own threadpool.
dataset_num_private_threads: Number of threads for a private threadpool
created for all datasets computation.
tpu: The address of the TPU to use, if any.
num_gpus: The number of GPUs to use, if any.
worker_hosts: comma-separated list of worker ip:port pairs for running
multi-worker models with DistributionStrategy.
task_index: If multi-worker training, the task index of this worker.
all_reduce_alg: Defines the algorithm for performing all-reduce.
num_packs: Sets `num_packs` in the cross device ops used in
MirroredStrategy. For details, see tf.distribute.NcclAllReduce.
mixed_precision_dtype: dtype of mixed precision policy. It can be 'float32',
'float16', or 'bfloat16'.
loss_scale: The type of loss scale, or 'float' value. This is used when
setting the mixed precision policy.
run_eagerly: Whether or not to run the experiment eagerly.
batchnorm_spatial_persistent: Whether or not to enable the spatial
persistent mode for CuDNN batch norm kernel for improved GPU performance.
"""
distribution_strategy
:
str
=
"mirrored"
enable_xla
:
bool
=
False
gpu_thread_mode
:
Optional
[
str
]
=
None
dataset_num_private_threads
:
Optional
[
int
]
=
None
per_gpu_thread_count
:
int
=
0
tpu
:
Optional
[
str
]
=
None
num_gpus
:
int
=
0
worker_hosts
:
Optional
[
str
]
=
None
task_index
:
int
=
-
1
all_reduce_alg
:
Optional
[
str
]
=
None
num_packs
:
int
=
1
mixed_precision_dtype
:
Optional
[
str
]
=
None
loss_scale
:
Optional
[
Union
[
str
,
float
]]
=
None
run_eagerly
:
bool
=
False
batchnorm_spatial_persistent
:
bool
=
False
# Global model parallelism configurations.
num_cores_per_replica
:
int
=
1
default_shard_dim
:
int
=
-
1
def
model_parallelism
(
self
):
return
dict
(
num_cores_per_replica
=
self
.
num_cores_per_replica
,
default_shard_dim
=
self
.
default_shard_dim
)
@
dataclasses
.
dataclass
class
TrainerConfig
(
base_config
.
Config
):
"""Configuration for trainer.
Attributes:
optimizer_config: optimizer config, it includes optimizer, learning rate,
and warmup schedule configs.
train_tf_while_loop: whether or not to use tf while loop.
train_tf_function: whether or not to use tf_function for training loop.
eval_tf_function: whether or not to use tf_function for eval.
allow_tpu_summary: Whether to allow summary happen inside the XLA program
runs on TPU through automatic outside compilation.
steps_per_loop: number of steps per loop.
summary_interval: number of steps between each summary.
checkpoint_interval: number of steps between checkpoints.
max_to_keep: max checkpoints to keep.
continuous_eval_timeout: maximum number of seconds to wait between
checkpoints, if set to None, continuous eval will wait indefinitely. This
is only used continuous_train_and_eval and continuous_eval modes. Default
value is 1 hrs.
train_steps: number of train steps.
validation_steps: number of eval steps. If `None`, the entire eval dataset
is used.
validation_interval: number of training steps to run between evaluations.
best_checkpoint_export_subdir: if set, the trainer will keep track of the
best evaluation metric, and export the corresponding best checkpoint under
`model_dir/best_checkpoint_export_subdir`. Note that this only works if
mode contains eval (such as `train_and_eval`, `continuous_eval`, and
`continuous_train_and_eval`).
best_checkpoint_eval_metric: for exporting the best checkpoint, which
evaluation metric the trainer should monitor. This can be any evaluation
metric appears on tensorboard.
best_checkpoint_metric_comp: for exporting the best checkpoint, how the
trainer should compare the evaluation metrics. This can be either `higher`
(higher the better) or `lower` (lower the better).
"""
optimizer_config
:
OptimizationConfig
=
OptimizationConfig
()
# Orbit settings.
train_tf_while_loop
:
bool
=
True
train_tf_function
:
bool
=
True
eval_tf_function
:
bool
=
True
allow_tpu_summary
:
bool
=
False
# Trainer intervals.
steps_per_loop
:
int
=
1000
summary_interval
:
int
=
1000
checkpoint_interval
:
int
=
1000
# Checkpoint manager.
max_to_keep
:
int
=
5
continuous_eval_timeout
:
int
=
60
*
60
# Train/Eval routines.
train_steps
:
int
=
0
# Sets validation steps to be -1 to evaluate the entire dataset.
validation_steps
:
int
=
-
1
validation_interval
:
int
=
1000
# Best checkpoint export.
best_checkpoint_export_subdir
:
str
=
""
best_checkpoint_eval_metric
:
str
=
""
best_checkpoint_metric_comp
:
str
=
"higher"
@
dataclasses
.
dataclass
class
TaskConfig
(
base_config
.
Config
):
init_checkpoint
:
str
=
""
model
:
base_config
.
Config
=
None
train_data
:
DataConfig
=
DataConfig
()
validation_data
:
DataConfig
=
DataConfig
()
@
dataclasses
.
dataclass
class
ExperimentConfig
(
base_config
.
Config
):
"""Top-level configuration."""
task
:
TaskConfig
=
TaskConfig
()
trainer
:
TrainerConfig
=
TrainerConfig
()
runtime
:
RuntimeConfig
=
RuntimeConfig
()
official/core/exp_factory.py
View file @
d6fe2516
...
...
@@ -15,8 +15,8 @@
# ==============================================================================
"""Experiment factory methods."""
from
official.core
import
config_definitions
as
cfg
from
official.core
import
registry
from
official.modeling.hyperparams
import
config_definitions
as
cfg
_REGISTERED_CONFIGS
=
{}
...
...
official/core/input_reader.py
View file @
d6fe2516
...
...
@@ -21,7 +21,7 @@ from typing import Any, Callable, Optional
import
tensorflow
as
tf
import
tensorflow_datasets
as
tfds
from
official.
modeling.hyperparams
import
config_definitions
as
cfg
from
official.
core
import
config_definitions
as
cfg
def
_get_random_integer
():
...
...
official/core/train_lib.py
View file @
d6fe2516
...
...
@@ -27,7 +27,7 @@ import tensorflow as tf
from
official.core
import
train_utils
from
official.core
import
base_task
from
official.
modeling.hyperparams
import
config_definitions
from
official.
core
import
config_definitions
class
BestCheckpointExporter
:
...
...
official/core/train_utils.py
View file @
d6fe2516
...
...
@@ -27,9 +27,9 @@ import tensorflow as tf
from
official.core
import
base_task
from
official.core
import
base_trainer
from
official.core
import
config_definitions
from
official.core
import
exp_factory
from
official.modeling
import
hyperparams
from
official.modeling.hyperparams
import
config_definitions
def
create_trainer
(
params
:
config_definitions
.
ExperimentConfig
,
...
...
official/modeling/hyperparams/config_definitions.py
View file @
d6fe2516
...
...
@@ -14,143 +14,16 @@
# limitations under the License.
# ==============================================================================
"""Common configuration settings."""
from
typing
import
Optional
,
Sequence
,
Union
# pylint:disable=wildcard-import
import
dataclasses
from
official.core.config_definitions
import
*
from
official.modeling.hyperparams
import
base_config
from
official.modeling.optimization.configs
import
optimization_config
OptimizationConfig
=
optimization_config
.
OptimizationConfig
@
dataclasses
.
dataclass
class
DataConfig
(
base_config
.
Config
):
"""The base configuration for building datasets.
Attributes:
input_path: The path to the input. It can be either (1) a str indicating
a file path/pattern, or (2) a str indicating multiple file paths/patterns
separated by comma (e.g "a, b, c" or no spaces "a,b,c"), or
(3) a list of str, each of which is a file path/pattern or multiple file
paths/patterns separated by comma.
It should not be specified when the following `tfds_name` is specified.
tfds_name: The name of the tensorflow dataset (TFDS). It should not be
specified when the above `input_path` is specified.
tfds_split: A str indicating which split of the data to load from TFDS. It
is required when above `tfds_name` is specified.
global_batch_size: The global batch size across all replicas.
is_training: Whether this data is used for training or not.
drop_remainder: Whether the last batch should be dropped in the case it has
fewer than `global_batch_size` elements.
shuffle_buffer_size: The buffer size used for shuffling training data.
cache: Whether to cache dataset examples. Can be used to avoid re-reading
from disk on the second epoch. Requires significant memory overhead.
cycle_length: The number of files that will be processed concurrently when
interleaving files.
block_length: The number of consecutive elements to produce from each input
element before cycling to another input element when interleaving files.
deterministic: A boolean controlling whether determinism should be enforced.
sharding: Whether sharding is used in the input pipeline.
enable_tf_data_service: A boolean indicating whether to enable tf.data
service for the input pipeline.
tf_data_service_address: The URI of a tf.data service to offload
preprocessing onto during training. The URI should be in the format
"protocol://address", e.g. "grpc://tf-data-service:5050". It can be
overridden by `FLAGS.tf_data_service` flag in the binary.
tf_data_service_job_name: The name of the tf.data service job. This
argument makes it possible for multiple datasets to share the same job.
The default behavior is that the dataset creates anonymous, exclusively
owned jobs.
tfds_data_dir: A str specifying the directory to read/write TFDS data.
tfds_download: A bool to indicate whether to download data using TFDS.
tfds_as_supervised: A bool. When loading dataset from TFDS, if True, the
returned tf.data.Dataset will have a 2-tuple structure (input, label)
according to builder.info.supervised_keys; if False, the default, the
returned tf.data.Dataset will have a dictionary with all the features.
tfds_skip_decoding_feature: A str to indicate which features are skipped for
decoding when loading dataset from TFDS. Use comma to separate multiple
features. The main use case is to skip the image/video decoding for better
performance.
"""
input_path
:
Union
[
Sequence
[
str
],
str
]
=
""
tfds_name
:
str
=
""
tfds_split
:
str
=
""
global_batch_size
:
int
=
0
is_training
:
bool
=
None
drop_remainder
:
bool
=
True
shuffle_buffer_size
:
int
=
100
cache
:
bool
=
False
cycle_length
:
Optional
[
int
]
=
None
block_length
:
int
=
1
deterministic
:
Optional
[
bool
]
=
None
sharding
:
bool
=
True
enable_tf_data_service
:
bool
=
False
tf_data_service_address
:
Optional
[
str
]
=
None
tf_data_service_job_name
:
Optional
[
str
]
=
None
tfds_data_dir
:
str
=
""
tfds_download
:
bool
=
False
tfds_as_supervised
:
bool
=
False
tfds_skip_decoding_feature
:
str
=
""
@
dataclasses
.
dataclass
class
RuntimeConfig
(
base_config
.
Config
):
"""High-level configurations for Runtime.
These include parameters that are not directly related to the experiment,
e.g. directories, accelerator type, etc.
Attributes:
distribution_strategy: e.g. 'mirrored', 'tpu', etc.
enable_xla: Whether or not to enable XLA.
per_gpu_thread_count: thread count per GPU.
gpu_thread_mode: Whether and how the GPU device uses its own threadpool.
dataset_num_private_threads: Number of threads for a private threadpool
created for all datasets computation.
tpu: The address of the TPU to use, if any.
num_gpus: The number of GPUs to use, if any.
worker_hosts: comma-separated list of worker ip:port pairs for running
multi-worker models with DistributionStrategy.
task_index: If multi-worker training, the task index of this worker.
all_reduce_alg: Defines the algorithm for performing all-reduce.
num_packs: Sets `num_packs` in the cross device ops used in
MirroredStrategy. For details, see tf.distribute.NcclAllReduce.
mixed_precision_dtype: dtype of mixed precision policy. It can be 'float32',
'float16', or 'bfloat16'.
loss_scale: The type of loss scale, or 'float' value. This is used when
setting the mixed precision policy.
run_eagerly: Whether or not to run the experiment eagerly.
batchnorm_spatial_persistent: Whether or not to enable the spatial
persistent mode for CuDNN batch norm kernel for improved GPU performance.
"""
distribution_strategy
:
str
=
"mirrored"
enable_xla
:
bool
=
False
gpu_thread_mode
:
Optional
[
str
]
=
None
dataset_num_private_threads
:
Optional
[
int
]
=
None
per_gpu_thread_count
:
int
=
0
tpu
:
Optional
[
str
]
=
None
num_gpus
:
int
=
0
worker_hosts
:
Optional
[
str
]
=
None
task_index
:
int
=
-
1
all_reduce_alg
:
Optional
[
str
]
=
None
num_packs
:
int
=
1
mixed_precision_dtype
:
Optional
[
str
]
=
None
loss_scale
:
Optional
[
Union
[
str
,
float
]]
=
None
run_eagerly
:
bool
=
False
batchnorm_spatial_persistent
:
bool
=
False
# Global model parallelism configurations.
num_cores_per_replica
:
int
=
1
default_shard_dim
:
int
=
-
1
def
model_parallelism
(
self
):
return
dict
(
num_cores_per_replica
=
self
.
num_cores_per_replica
,
default_shard_dim
=
self
.
default_shard_dim
)
# TODO(hongkuny): These configs are used in models that are going to deprecate.
# Once those models are removed, we should delete this file to avoid confusion.
# Users should not use this file anymore.
@
dataclasses
.
dataclass
class
TensorboardConfig
(
base_config
.
Config
):
"""Configuration for Tensorboard.
...
...
@@ -183,79 +56,3 @@ class CallbacksConfig(base_config.Config):
enable_backup_and_restore
:
bool
=
False
enable_tensorboard
:
bool
=
True
enable_time_history
:
bool
=
True
@
dataclasses
.
dataclass
class
TrainerConfig
(
base_config
.
Config
):
"""Configuration for trainer.
Attributes:
optimizer_config: optimizer config, it includes optimizer, learning rate,
and warmup schedule configs.
train_tf_while_loop: whether or not to use tf while loop.
train_tf_function: whether or not to use tf_function for training loop.
eval_tf_function: whether or not to use tf_function for eval.
allow_tpu_summary: Whether to allow summary happen inside the XLA program
runs on TPU through automatic outside compilation.
steps_per_loop: number of steps per loop.
summary_interval: number of steps between each summary.
checkpoint_interval: number of steps between checkpoints.
max_to_keep: max checkpoints to keep.
continuous_eval_timeout: maximum number of seconds to wait between
checkpoints, if set to None, continuous eval will wait indefinitely. This
is only used continuous_train_and_eval and continuous_eval modes. Default
value is 1 hrs.
train_steps: number of train steps.
validation_steps: number of eval steps. If `None`, the entire eval dataset
is used.
validation_interval: number of training steps to run between evaluations.
best_checkpoint_export_subdir: if set, the trainer will keep track of the
best evaluation metric, and export the corresponding best checkpoint under
`model_dir/best_checkpoint_export_subdir`. Note that this only works if
mode contains eval (such as `train_and_eval`, `continuous_eval`, and
`continuous_train_and_eval`).
best_checkpoint_eval_metric: for exporting the best checkpoint, which
evaluation metric the trainer should monitor. This can be any evaluation
metric appears on tensorboard.
best_checkpoint_metric_comp: for exporting the best checkpoint, how the
trainer should compare the evaluation metrics. This can be either `higher`
(higher the better) or `lower` (lower the better).
"""
optimizer_config
:
OptimizationConfig
=
OptimizationConfig
()
# Orbit settings.
train_tf_while_loop
:
bool
=
True
train_tf_function
:
bool
=
True
eval_tf_function
:
bool
=
True
allow_tpu_summary
:
bool
=
False
# Trainer intervals.
steps_per_loop
:
int
=
1000
summary_interval
:
int
=
1000
checkpoint_interval
:
int
=
1000
# Checkpoint manager.
max_to_keep
:
int
=
5
continuous_eval_timeout
:
int
=
60
*
60
# Train/Eval routines.
train_steps
:
int
=
0
# Sets validation steps to be -1 to evaluate the entire dataset.
validation_steps
:
int
=
-
1
validation_interval
:
int
=
1000
# Best checkpoint export.
best_checkpoint_export_subdir
:
str
=
""
best_checkpoint_eval_metric
:
str
=
""
best_checkpoint_metric_comp
:
str
=
"higher"
@
dataclasses
.
dataclass
class
TaskConfig
(
base_config
.
Config
):
init_checkpoint
:
str
=
""
model
:
base_config
.
Config
=
None
train_data
:
DataConfig
=
DataConfig
()
validation_data
:
DataConfig
=
DataConfig
()
@
dataclasses
.
dataclass
class
ExperimentConfig
(
base_config
.
Config
):
"""Top-level configuration."""
task
:
TaskConfig
=
TaskConfig
()
trainer
:
TrainerConfig
=
TrainerConfig
()
runtime
:
RuntimeConfig
=
RuntimeConfig
()
official/nlp/data/data_loader_factory_test.py
View file @
d6fe2516
...
...
@@ -18,7 +18,7 @@
import
dataclasses
import
tensorflow
as
tf
from
official.
modeling.hyperparams
import
config_definitions
as
cfg
from
official.
core
import
config_definitions
as
cfg
from
official.nlp.data
import
data_loader_factory
...
...
official/nlp/data/pretrain_dataloader.py
View file @
d6fe2516
...
...
@@ -18,9 +18,8 @@ from typing import Mapping, Optional
import
dataclasses
import
tensorflow
as
tf
from
official.core
import
config_definitions
as
cfg
from
official.core
import
input_reader
from
official.modeling.hyperparams
import
config_definitions
as
cfg
from
official.nlp.data
import
data_loader
from
official.nlp.data
import
data_loader_factory
...
...
official/nlp/data/question_answering_dataloader.py
View file @
d6fe2516
...
...
@@ -18,9 +18,8 @@ from typing import Mapping, Optional
import
dataclasses
import
tensorflow
as
tf
from
official.core
import
config_definitions
as
cfg
from
official.core
import
input_reader
from
official.modeling.hyperparams
import
config_definitions
as
cfg
from
official.nlp.data
import
data_loader
from
official.nlp.data
import
data_loader_factory
...
...
official/nlp/data/sentence_prediction_dataloader.py
View file @
d6fe2516
...
...
@@ -18,9 +18,8 @@ from typing import Mapping, Optional
import
dataclasses
import
tensorflow
as
tf
from
official.core
import
config_definitions
as
cfg
from
official.core
import
input_reader
from
official.modeling.hyperparams
import
config_definitions
as
cfg
from
official.nlp.data
import
data_loader
from
official.nlp.data
import
data_loader_factory
...
...
official/nlp/data/tagging_dataloader.py
View file @
d6fe2516
...
...
@@ -18,9 +18,8 @@ from typing import Mapping, Optional
import
dataclasses
import
tensorflow
as
tf
from
official.core
import
config_definitions
as
cfg
from
official.core
import
input_reader
from
official.modeling.hyperparams
import
config_definitions
as
cfg
from
official.nlp.data
import
data_loader
from
official.nlp.data
import
data_loader_factory
...
...
official/nlp/data/wmt_dataloader.py
View file @
d6fe2516
...
...
@@ -41,9 +41,8 @@ from typing import Optional
import
dataclasses
import
tensorflow
as
tf
from
official.core
import
config_definitions
as
cfg
from
official.core
import
input_reader
from
official.modeling.hyperparams
import
config_definitions
as
cfg
from
official.nlp.data
import
data_loader
from
official.nlp.data
import
data_loader_factory
...
...
official/nlp/tasks/electra_task.py
View file @
d6fe2516
...
...
@@ -19,9 +19,9 @@ import dataclasses
import
tensorflow
as
tf
from
official.core
import
base_task
from
official.core
import
config_definitions
as
cfg
from
official.core
import
task_factory
from
official.modeling
import
tf_utils
from
official.modeling.hyperparams
import
config_definitions
as
cfg
from
official.nlp.configs
import
bert
from
official.nlp.configs
import
electra
from
official.nlp.configs
import
encoders
...
...
official/nlp/tasks/masked_lm.py
View file @
d6fe2516
...
...
@@ -19,9 +19,9 @@ import dataclasses
import
tensorflow
as
tf
from
official.core
import
base_task
from
official.core
import
config_definitions
as
cfg
from
official.core
import
task_factory
from
official.modeling
import
tf_utils
from
official.modeling.hyperparams
import
config_definitions
as
cfg
from
official.nlp.configs
import
bert
from
official.nlp.configs
import
encoders
from
official.nlp.data
import
data_loader_factory
...
...
official/nlp/tasks/question_answering.py
View file @
d6fe2516
...
...
@@ -25,9 +25,9 @@ import tensorflow as tf
import
tensorflow_hub
as
hub
from
official.core
import
base_task
from
official.core
import
config_definitions
as
cfg
from
official.core
import
task_factory
from
official.modeling.hyperparams
import
base_config
from
official.modeling.hyperparams
import
config_definitions
as
cfg
from
official.nlp.bert
import
squad_evaluate_v1_1
from
official.nlp.bert
import
squad_evaluate_v2_0
from
official.nlp.bert
import
tokenization
...
...
official/nlp/tasks/sentence_prediction.py
View file @
d6fe2516
...
...
@@ -26,10 +26,10 @@ import tensorflow as tf
import
tensorflow_hub
as
hub
from
official.core
import
base_task
from
official.core
import
config_definitions
as
cfg
from
official.core
import
task_factory
from
official.modeling
import
tf_utils
from
official.modeling.hyperparams
import
base_config
from
official.modeling.hyperparams
import
config_definitions
as
cfg
from
official.nlp.configs
import
encoders
from
official.nlp.data
import
data_loader_factory
from
official.nlp.modeling
import
models
...
...
official/nlp/tasks/tagging.py
View file @
d6fe2516
...
...
@@ -25,9 +25,9 @@ import tensorflow as tf
import
tensorflow_hub
as
hub
from
official.core
import
base_task
from
official.core
import
config_definitions
as
cfg
from
official.core
import
task_factory
from
official.modeling.hyperparams
import
base_config
from
official.modeling.hyperparams
import
config_definitions
as
cfg
from
official.nlp.configs
import
encoders
from
official.nlp.data
import
data_loader_factory
from
official.nlp.modeling
import
models
...
...
official/nlp/train_ctl_continuous_finetune.py
View file @
d6fe2516
...
...
@@ -14,7 +14,6 @@
# limitations under the License.
# ==============================================================================
"""TFM continuous finetuning+eval training driver."""
import
gc
import
os
import
time
...
...
@@ -31,11 +30,11 @@ from official.common import registry_imports
# pylint: enable=unused-import
from
official.common
import
distribute_utils
from
official.common
import
flags
as
tfm_flags
from
official.core
import
config_definitions
from
official.core
import
task_factory
from
official.core
import
train_lib
from
official.core
import
train_utils
from
official.modeling
import
performance
from
official.modeling.hyperparams
import
config_definitions
FLAGS
=
flags
.
FLAGS
...
...
Prev
1
2
Next
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment