image_classification.py 11.6 KB
Newer Older
Yeqing Li's avatar
Yeqing Li committed
1
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
Abdullah Rashwan's avatar
Abdullah Rashwan committed
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Yeqing Li's avatar
Yeqing Li committed
14

Abdullah Rashwan's avatar
Abdullah Rashwan committed
15
"""Image classification task definition."""
Fan Yang's avatar
Fan Yang committed
16
from typing import Any, Optional, List, Tuple
Abdullah Rashwan's avatar
Abdullah Rashwan committed
17
from absl import logging
Abdullah Rashwan's avatar
Abdullah Rashwan committed
18
import tensorflow as tf
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
19

20
from official.common import dataset_fn
Abdullah Rashwan's avatar
Abdullah Rashwan committed
21
22
23
24
25
from official.core import base_task
from official.core import task_factory
from official.modeling import tf_utils
from official.vision.beta.configs import image_classification as exp_cfg
from official.vision.beta.dataloaders import classification_input
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
26
from official.vision.beta.dataloaders import input_reader_factory
Abdullah Rashwan's avatar
Abdullah Rashwan committed
27
from official.vision.beta.dataloaders import tfds_factory
Abdullah Rashwan's avatar
Abdullah Rashwan committed
28
from official.vision.beta.modeling import factory
29
from official.vision.beta.ops import augment
Abdullah Rashwan's avatar
Abdullah Rashwan committed
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53


@task_factory.register_task_cls(exp_cfg.ImageClassificationTask)
class ImageClassificationTask(base_task.Task):
  """A task for image classification."""

  def build_model(self):
    """Builds classification model."""
    input_specs = tf.keras.layers.InputSpec(
        shape=[None] + self.task_config.model.input_size)

    l2_weight_decay = self.task_config.losses.l2_weight_decay
    # Divide weight decay by 2.0 to match the implementation of tf.nn.l2_loss.
    # (https://www.tensorflow.org/api_docs/python/tf/keras/regularizers/l2)
    # (https://www.tensorflow.org/api_docs/python/tf/nn/l2_loss)
    l2_regularizer = (tf.keras.regularizers.l2(
        l2_weight_decay / 2.0) if l2_weight_decay else None)

    model = factory.build_classification_model(
        input_specs=input_specs,
        model_config=self.task_config.model,
        l2_regularizer=l2_regularizer)
    return model

Abdullah Rashwan's avatar
Abdullah Rashwan committed
54
  def initialize(self, model: tf.keras.Model):
Fan Yang's avatar
Fan Yang committed
55
    """Loads pretrained checkpoint."""
Abdullah Rashwan's avatar
Abdullah Rashwan committed
56
57
58
59
60
61
62
63
64
    if not self.task_config.init_checkpoint:
      return

    ckpt_dir_or_file = self.task_config.init_checkpoint
    if tf.io.gfile.isdir(ckpt_dir_or_file):
      ckpt_dir_or_file = tf.train.latest_checkpoint(ckpt_dir_or_file)

    # Restoring checkpoint.
    if self.task_config.init_checkpoint_modules == 'all':
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
65
      ckpt = tf.train.Checkpoint(model=model)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
66
67
      status = ckpt.read(ckpt_dir_or_file)
      status.expect_partial().assert_existing_objects_matched()
Abdullah Rashwan's avatar
Abdullah Rashwan committed
68
69
    elif self.task_config.init_checkpoint_modules == 'backbone':
      ckpt = tf.train.Checkpoint(backbone=model.backbone)
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
70
      status = ckpt.read(ckpt_dir_or_file)
Abdullah Rashwan's avatar
Abdullah Rashwan committed
71
72
      status.expect_partial().assert_existing_objects_matched()
    else:
Yeqing Li's avatar
Yeqing Li committed
73
74
      raise ValueError(
          "Only 'all' or 'backbone' can be used to initialize the model.")
Abdullah Rashwan's avatar
Abdullah Rashwan committed
75
76
77
78

    logging.info('Finished loading pretrained checkpoint from %s',
                 ckpt_dir_or_file)

Abdullah Rashwan's avatar
Abdullah Rashwan committed
79
80
81
82
83
  def build_inputs(
      self,
      params: exp_cfg.DataConfig,
      input_context: Optional[tf.distribute.InputContext] = None
  ) -> tf.data.Dataset:
Abdullah Rashwan's avatar
Abdullah Rashwan committed
84
85
86
87
    """Builds classification input."""

    num_classes = self.task_config.model.num_classes
    input_size = self.task_config.model.input_size
Fan Yang's avatar
Fan Yang committed
88
89
    image_field_key = self.task_config.train_data.image_field_key
    label_field_key = self.task_config.train_data.label_field_key
Abdullah Rashwan's avatar
Abdullah Rashwan committed
90
    is_multilabel = self.task_config.train_data.is_multilabel
Abdullah Rashwan's avatar
Abdullah Rashwan committed
91

92
    if params.tfds_name:
Abdullah Rashwan's avatar
Abdullah Rashwan committed
93
      decoder = tfds_factory.get_classification_decoder(params.tfds_name)
94
    else:
Fan Yang's avatar
Fan Yang committed
95
      decoder = classification_input.Decoder(
Abdullah Rashwan's avatar
Abdullah Rashwan committed
96
97
          image_field_key=image_field_key, label_field_key=label_field_key,
          is_multilabel=is_multilabel)
98

Abdullah Rashwan's avatar
Abdullah Rashwan committed
99
100
101
    parser = classification_input.Parser(
        output_size=input_size[:2],
        num_classes=num_classes,
Fan Yang's avatar
Fan Yang committed
102
103
        image_field_key=image_field_key,
        label_field_key=label_field_key,
Abdullah Rashwan's avatar
Abdullah Rashwan committed
104
        decode_jpeg_only=params.decode_jpeg_only,
105
106
        aug_rand_hflip=params.aug_rand_hflip,
        aug_type=params.aug_type,
107
108
        color_jitter=params.color_jitter,
        random_erasing=params.random_erasing,
Abdullah Rashwan's avatar
Abdullah Rashwan committed
109
        is_multilabel=is_multilabel,
Abdullah Rashwan's avatar
Abdullah Rashwan committed
110
111
        dtype=params.dtype)

112
113
114
115
116
117
118
    postprocess_fn = None
    if params.mixup_and_cutmix:
      postprocess_fn = augment.MixupAndCutmix(
          mixup_alpha=params.mixup_and_cutmix.mixup_alpha,
          cutmix_alpha=params.mixup_and_cutmix.cutmix_alpha,
          prob=params.mixup_and_cutmix.prob,
          label_smoothing=params.mixup_and_cutmix.label_smoothing,
119
          num_classes=num_classes)
120

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
121
    reader = input_reader_factory.input_reader_generator(
Abdullah Rashwan's avatar
Abdullah Rashwan committed
122
        params,
Rajagopal Ananthanarayanan's avatar
Rajagopal Ananthanarayanan committed
123
        dataset_fn=dataset_fn.pick_dataset_fn(params.file_type),
Abdullah Rashwan's avatar
Abdullah Rashwan committed
124
        decoder_fn=decoder.decode,
125
126
        parser_fn=parser.parse_fn(params.is_training),
        postprocess_fn=postprocess_fn)
Abdullah Rashwan's avatar
Abdullah Rashwan committed
127
128
129
130
131

    dataset = reader.read(input_context=input_context)

    return dataset

Fan Yang's avatar
Fan Yang committed
132
133
134
  def build_losses(self,
                   labels: tf.Tensor,
                   model_outputs: tf.Tensor,
Abdullah Rashwan's avatar
Abdullah Rashwan committed
135
                   aux_losses: Optional[Any] = None) -> tf.Tensor:
Fan Yang's avatar
Fan Yang committed
136
    """Builds sparse categorical cross entropy loss.
Abdullah Rashwan's avatar
Abdullah Rashwan committed
137
138

    Args:
Fan Yang's avatar
Fan Yang committed
139
      labels: Input groundtruth labels.
Abdullah Rashwan's avatar
Abdullah Rashwan committed
140
      model_outputs: Output logits of the classifier.
Fan Yang's avatar
Fan Yang committed
141
      aux_losses: The auxiliarly loss tensors, i.e. `losses` in tf.keras.Model.
Abdullah Rashwan's avatar
Abdullah Rashwan committed
142
143
144
145
146

    Returns:
      The total loss tensor.
    """
    losses_config = self.task_config.losses
Abdullah Rashwan's avatar
Abdullah Rashwan committed
147
148
149
150
151
152
153
154
155
    is_multilabel = self.task_config.train_data.is_multilabel

    if not is_multilabel:
      if losses_config.one_hot:
        total_loss = tf.keras.losses.categorical_crossentropy(
            labels,
            model_outputs,
            from_logits=True,
            label_smoothing=losses_config.label_smoothing)
156
157
      elif losses_config.soft_labels:
        total_loss = tf.nn.softmax_cross_entropy_with_logits(
158
            labels, model_outputs)
Abdullah Rashwan's avatar
Abdullah Rashwan committed
159
160
161
      else:
        total_loss = tf.keras.losses.sparse_categorical_crossentropy(
            labels, model_outputs, from_logits=True)
Abdullah Rashwan's avatar
Abdullah Rashwan committed
162
    else:
Abdullah Rashwan's avatar
Abdullah Rashwan committed
163
164
165
166
      # Multi-label weighted binary cross entropy loss.
      total_loss = tf.nn.sigmoid_cross_entropy_with_logits(
          labels=labels, logits=model_outputs)
      total_loss = tf.reduce_sum(total_loss, axis=-1)
Abdullah Rashwan's avatar
Abdullah Rashwan committed
167
168
169
170
171
172
173

    total_loss = tf_utils.safe_mean(total_loss)
    if aux_losses:
      total_loss += tf.add_n(aux_losses)

    return total_loss

Abdullah Rashwan's avatar
Abdullah Rashwan committed
174
175
  def build_metrics(self,
                    training: bool = True) -> List[tf.keras.metrics.Metric]:
Abdullah Rashwan's avatar
Abdullah Rashwan committed
176
    """Gets streaming metrics for training/validation."""
Abdullah Rashwan's avatar
Abdullah Rashwan committed
177
178
179
    is_multilabel = self.task_config.train_data.is_multilabel
    if not is_multilabel:
      k = self.task_config.evaluation.top_k
180
181
      if (self.task_config.losses.one_hot or
          self.task_config.losses.soft_labels):
Abdullah Rashwan's avatar
Abdullah Rashwan committed
182
183
184
185
186
187
188
189
190
        metrics = [
            tf.keras.metrics.CategoricalAccuracy(name='accuracy'),
            tf.keras.metrics.TopKCategoricalAccuracy(
                k=k, name='top_{}_accuracy'.format(k))]
      else:
        metrics = [
            tf.keras.metrics.SparseCategoricalAccuracy(name='accuracy'),
            tf.keras.metrics.SparseTopKCategoricalAccuracy(
                k=k, name='top_{}_accuracy'.format(k))]
Abdullah Rashwan's avatar
Abdullah Rashwan committed
191
    else:
Abdullah Rashwan's avatar
Abdullah Rashwan committed
192
193
194
195
196
197
198
199
200
201
202
203
      metrics = []
      # These metrics destablize the training if included in training. The jobs
      # fail due to OOM.
      # TODO(arashwan): Investigate adding following metric to train.
      if not training:
        metrics = [
            tf.keras.metrics.AUC(
                name='globalPR-AUC',
                curve='PR',
                multi_label=False,
                from_logits=True),
            tf.keras.metrics.AUC(
Abdullah Rashwan's avatar
Abdullah Rashwan committed
204
                name='meanPR-AUC',
Abdullah Rashwan's avatar
Abdullah Rashwan committed
205
206
207
208
209
                curve='PR',
                multi_label=True,
                num_labels=self.task_config.model.num_classes,
                from_logits=True),
        ]
Abdullah Rashwan's avatar
Abdullah Rashwan committed
210
211
    return metrics

Fan Yang's avatar
Fan Yang committed
212
213
214
215
216
  def train_step(self,
                 inputs: Tuple[Any, Any],
                 model: tf.keras.Model,
                 optimizer: tf.keras.optimizers.Optimizer,
                 metrics: Optional[List[Any]] = None):
Abdullah Rashwan's avatar
Abdullah Rashwan committed
217
218
219
    """Does forward and backward.

    Args:
Fan Yang's avatar
Fan Yang committed
220
221
222
223
      inputs: A tuple of of input tensors of (features, labels).
      model: A tf.keras.Model instance.
      optimizer: The optimizer for this training step.
      metrics: A nested structure of metrics objects.
Abdullah Rashwan's avatar
Abdullah Rashwan committed
224
225
226
227
228

    Returns:
      A dictionary of logs.
    """
    features, labels = inputs
Abdullah Rashwan's avatar
Abdullah Rashwan committed
229
230
    is_multilabel = self.task_config.train_data.is_multilabel
    if self.task_config.losses.one_hot and not is_multilabel:
Abdullah Rashwan's avatar
Abdullah Rashwan committed
231
232
233
234
235
236
237
238
239
240
241
242
      labels = tf.one_hot(labels, self.task_config.model.num_classes)

    num_replicas = tf.distribute.get_strategy().num_replicas_in_sync
    with tf.GradientTape() as tape:
      outputs = model(features, training=True)
      # Casting output layer as float32 is necessary when mixed_precision is
      # mixed_float16 or mixed_bfloat16 to ensure output is casted as float32.
      outputs = tf.nest.map_structure(
          lambda x: tf.cast(x, tf.float32), outputs)

      # Computes per-replica loss.
      loss = self.build_losses(
243
244
245
          model_outputs=outputs,
          labels=labels,
          aux_losses=model.losses)
Abdullah Rashwan's avatar
Abdullah Rashwan committed
246
247
248
249
250
251
252
      # Scales loss as the default gradients allreduce performs sum inside the
      # optimizer.
      scaled_loss = loss / num_replicas

      # For mixed_precision policy, when LossScaleOptimizer is used, loss is
      # scaled for numerical stability.
      if isinstance(
Pankaj Kanwar's avatar
Pankaj Kanwar committed
253
          optimizer, tf.keras.mixed_precision.LossScaleOptimizer):
Abdullah Rashwan's avatar
Abdullah Rashwan committed
254
255
256
257
258
259
260
        scaled_loss = optimizer.get_scaled_loss(scaled_loss)

    tvars = model.trainable_variables
    grads = tape.gradient(scaled_loss, tvars)
    # Scales back gradient before apply_gradients when LossScaleOptimizer is
    # used.
    if isinstance(
Pankaj Kanwar's avatar
Pankaj Kanwar committed
261
        optimizer, tf.keras.mixed_precision.LossScaleOptimizer):
Abdullah Rashwan's avatar
Abdullah Rashwan committed
262
263
264
265
266
267
268
269
270
271
272
      grads = optimizer.get_unscaled_gradients(grads)
    optimizer.apply_gradients(list(zip(grads, tvars)))

    logs = {self.loss: loss}
    if metrics:
      self.process_metrics(metrics, labels, outputs)
    elif model.compiled_metrics:
      self.process_compiled_metrics(model.compiled_metrics, labels, outputs)
      logs.update({m.name: m.result() for m in model.metrics})
    return logs

Fan Yang's avatar
Fan Yang committed
273
274
275
276
277
  def validation_step(self,
                      inputs: Tuple[Any, Any],
                      model: tf.keras.Model,
                      metrics: Optional[List[Any]] = None):
    """Runs validatation step.
Abdullah Rashwan's avatar
Abdullah Rashwan committed
278
279

    Args:
Fan Yang's avatar
Fan Yang committed
280
281
282
      inputs: A tuple of of input tensors of (features, labels).
      model: A tf.keras.Model instance.
      metrics: A nested structure of metrics objects.
Abdullah Rashwan's avatar
Abdullah Rashwan committed
283
284
285
286
287

    Returns:
      A dictionary of logs.
    """
    features, labels = inputs
288
289
    one_hot = self.task_config.losses.one_hot
    soft_labels = self.task_config.losses.soft_labels
Abdullah Rashwan's avatar
Abdullah Rashwan committed
290
    is_multilabel = self.task_config.train_data.is_multilabel
291
    if (one_hot or soft_labels) and not is_multilabel:
Abdullah Rashwan's avatar
Abdullah Rashwan committed
292
293
294
295
      labels = tf.one_hot(labels, self.task_config.model.num_classes)

    outputs = self.inference_step(features, model)
    outputs = tf.nest.map_structure(lambda x: tf.cast(x, tf.float32), outputs)
296
297
298
299
    loss = self.build_losses(
        model_outputs=outputs,
        labels=labels,
        aux_losses=model.losses)
Abdullah Rashwan's avatar
Abdullah Rashwan committed
300
301
302
303
304
305
306
307
308

    logs = {self.loss: loss}
    if metrics:
      self.process_metrics(metrics, labels, outputs)
    elif model.compiled_metrics:
      self.process_compiled_metrics(model.compiled_metrics, labels, outputs)
      logs.update({m.name: m.result() for m in model.metrics})
    return logs

Fan Yang's avatar
Fan Yang committed
309
  def inference_step(self, inputs: tf.Tensor, model: tf.keras.Model):
Abdullah Rashwan's avatar
Abdullah Rashwan committed
310
311
    """Performs the forward step."""
    return model(inputs, training=False)