image_classification.py 10.8 KB
Newer Older
Yeqing Li's avatar
Yeqing Li committed
1
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
Abdullah Rashwan's avatar
Abdullah Rashwan committed
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Yeqing Li's avatar
Yeqing Li committed
14

Abdullah Rashwan's avatar
Abdullah Rashwan committed
15
"""Image classification task definition."""
Fan Yang's avatar
Fan Yang committed
16
from typing import Any, Optional, List, Tuple
Abdullah Rashwan's avatar
Abdullah Rashwan committed
17
from absl import logging
Abdullah Rashwan's avatar
Abdullah Rashwan committed
18
import tensorflow as tf
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
19

20
from official.common import dataset_fn
Abdullah Rashwan's avatar
Abdullah Rashwan committed
21
22
23
24
25
from official.core import base_task
from official.core import task_factory
from official.modeling import tf_utils
from official.vision.beta.configs import image_classification as exp_cfg
from official.vision.beta.dataloaders import classification_input
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
26
from official.vision.beta.dataloaders import input_reader_factory
Abdullah Rashwan's avatar
Abdullah Rashwan committed
27
from official.vision.beta.dataloaders import tfds_factory
Abdullah Rashwan's avatar
Abdullah Rashwan committed
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
from official.vision.beta.modeling import factory


@task_factory.register_task_cls(exp_cfg.ImageClassificationTask)
class ImageClassificationTask(base_task.Task):
  """A task for image classification."""

  def build_model(self):
    """Builds classification model."""
    input_specs = tf.keras.layers.InputSpec(
        shape=[None] + self.task_config.model.input_size)

    l2_weight_decay = self.task_config.losses.l2_weight_decay
    # Divide weight decay by 2.0 to match the implementation of tf.nn.l2_loss.
    # (https://www.tensorflow.org/api_docs/python/tf/keras/regularizers/l2)
    # (https://www.tensorflow.org/api_docs/python/tf/nn/l2_loss)
    l2_regularizer = (tf.keras.regularizers.l2(
        l2_weight_decay / 2.0) if l2_weight_decay else None)

    model = factory.build_classification_model(
        input_specs=input_specs,
        model_config=self.task_config.model,
        l2_regularizer=l2_regularizer)
    return model

Abdullah Rashwan's avatar
Abdullah Rashwan committed
53
  def initialize(self, model: tf.keras.Model):
Fan Yang's avatar
Fan Yang committed
54
    """Loads pretrained checkpoint."""
Abdullah Rashwan's avatar
Abdullah Rashwan committed
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
    if not self.task_config.init_checkpoint:
      return

    ckpt_dir_or_file = self.task_config.init_checkpoint
    if tf.io.gfile.isdir(ckpt_dir_or_file):
      ckpt_dir_or_file = tf.train.latest_checkpoint(ckpt_dir_or_file)

    # Restoring checkpoint.
    if self.task_config.init_checkpoint_modules == 'all':
      ckpt = tf.train.Checkpoint(**model.checkpoint_items)
      status = ckpt.restore(ckpt_dir_or_file)
      status.assert_consumed()
    elif self.task_config.init_checkpoint_modules == 'backbone':
      ckpt = tf.train.Checkpoint(backbone=model.backbone)
      status = ckpt.restore(ckpt_dir_or_file)
      status.expect_partial().assert_existing_objects_matched()
    else:
Yeqing Li's avatar
Yeqing Li committed
72
73
      raise ValueError(
          "Only 'all' or 'backbone' can be used to initialize the model.")
Abdullah Rashwan's avatar
Abdullah Rashwan committed
74
75
76
77

    logging.info('Finished loading pretrained checkpoint from %s',
                 ckpt_dir_or_file)

Abdullah Rashwan's avatar
Abdullah Rashwan committed
78
79
80
81
82
  def build_inputs(
      self,
      params: exp_cfg.DataConfig,
      input_context: Optional[tf.distribute.InputContext] = None
  ) -> tf.data.Dataset:
Abdullah Rashwan's avatar
Abdullah Rashwan committed
83
84
85
86
    """Builds classification input."""

    num_classes = self.task_config.model.num_classes
    input_size = self.task_config.model.input_size
Fan Yang's avatar
Fan Yang committed
87
88
    image_field_key = self.task_config.train_data.image_field_key
    label_field_key = self.task_config.train_data.label_field_key
Abdullah Rashwan's avatar
Abdullah Rashwan committed
89
    is_multilabel = self.task_config.train_data.is_multilabel
Abdullah Rashwan's avatar
Abdullah Rashwan committed
90

91
    if params.tfds_name:
Abdullah Rashwan's avatar
Abdullah Rashwan committed
92
      decoder = tfds_factory.get_classification_decoder(params.tfds_name)
93
    else:
Fan Yang's avatar
Fan Yang committed
94
      decoder = classification_input.Decoder(
Abdullah Rashwan's avatar
Abdullah Rashwan committed
95
96
          image_field_key=image_field_key, label_field_key=label_field_key,
          is_multilabel=is_multilabel)
97

Abdullah Rashwan's avatar
Abdullah Rashwan committed
98
99
100
    parser = classification_input.Parser(
        output_size=input_size[:2],
        num_classes=num_classes,
Fan Yang's avatar
Fan Yang committed
101
102
        image_field_key=image_field_key,
        label_field_key=label_field_key,
Abdullah Rashwan's avatar
Abdullah Rashwan committed
103
        decode_jpeg_only=params.decode_jpeg_only,
104
105
        aug_rand_hflip=params.aug_rand_hflip,
        aug_type=params.aug_type,
Abdullah Rashwan's avatar
Abdullah Rashwan committed
106
        is_multilabel=is_multilabel,
Abdullah Rashwan's avatar
Abdullah Rashwan committed
107
108
        dtype=params.dtype)

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
109
    reader = input_reader_factory.input_reader_generator(
Abdullah Rashwan's avatar
Abdullah Rashwan committed
110
        params,
Rajagopal Ananthanarayanan's avatar
Rajagopal Ananthanarayanan committed
111
        dataset_fn=dataset_fn.pick_dataset_fn(params.file_type),
Abdullah Rashwan's avatar
Abdullah Rashwan committed
112
113
114
115
116
117
118
        decoder_fn=decoder.decode,
        parser_fn=parser.parse_fn(params.is_training))

    dataset = reader.read(input_context=input_context)

    return dataset

Fan Yang's avatar
Fan Yang committed
119
120
121
  def build_losses(self,
                   labels: tf.Tensor,
                   model_outputs: tf.Tensor,
Abdullah Rashwan's avatar
Abdullah Rashwan committed
122
                   aux_losses: Optional[Any] = None) -> tf.Tensor:
Fan Yang's avatar
Fan Yang committed
123
    """Builds sparse categorical cross entropy loss.
Abdullah Rashwan's avatar
Abdullah Rashwan committed
124
125

    Args:
Fan Yang's avatar
Fan Yang committed
126
      labels: Input groundtruth labels.
Abdullah Rashwan's avatar
Abdullah Rashwan committed
127
      model_outputs: Output logits of the classifier.
Fan Yang's avatar
Fan Yang committed
128
      aux_losses: The auxiliarly loss tensors, i.e. `losses` in tf.keras.Model.
Abdullah Rashwan's avatar
Abdullah Rashwan committed
129
130
131
132
133

    Returns:
      The total loss tensor.
    """
    losses_config = self.task_config.losses
Abdullah Rashwan's avatar
Abdullah Rashwan committed
134
135
136
137
138
139
140
141
142
143
144
145
    is_multilabel = self.task_config.train_data.is_multilabel

    if not is_multilabel:
      if losses_config.one_hot:
        total_loss = tf.keras.losses.categorical_crossentropy(
            labels,
            model_outputs,
            from_logits=True,
            label_smoothing=losses_config.label_smoothing)
      else:
        total_loss = tf.keras.losses.sparse_categorical_crossentropy(
            labels, model_outputs, from_logits=True)
Abdullah Rashwan's avatar
Abdullah Rashwan committed
146
    else:
Abdullah Rashwan's avatar
Abdullah Rashwan committed
147
148
149
150
      # Multi-label weighted binary cross entropy loss.
      total_loss = tf.nn.sigmoid_cross_entropy_with_logits(
          labels=labels, logits=model_outputs)
      total_loss = tf.reduce_sum(total_loss, axis=-1)
Abdullah Rashwan's avatar
Abdullah Rashwan committed
151
152
153
154
155
156
157

    total_loss = tf_utils.safe_mean(total_loss)
    if aux_losses:
      total_loss += tf.add_n(aux_losses)

    return total_loss

Abdullah Rashwan's avatar
Abdullah Rashwan committed
158
159
  def build_metrics(self,
                    training: bool = True) -> List[tf.keras.metrics.Metric]:
Abdullah Rashwan's avatar
Abdullah Rashwan committed
160
    """Gets streaming metrics for training/validation."""
Abdullah Rashwan's avatar
Abdullah Rashwan committed
161
162
163
164
165
166
167
168
169
170
171
172
173
    is_multilabel = self.task_config.train_data.is_multilabel
    if not is_multilabel:
      k = self.task_config.evaluation.top_k
      if self.task_config.losses.one_hot:
        metrics = [
            tf.keras.metrics.CategoricalAccuracy(name='accuracy'),
            tf.keras.metrics.TopKCategoricalAccuracy(
                k=k, name='top_{}_accuracy'.format(k))]
      else:
        metrics = [
            tf.keras.metrics.SparseCategoricalAccuracy(name='accuracy'),
            tf.keras.metrics.SparseTopKCategoricalAccuracy(
                k=k, name='top_{}_accuracy'.format(k))]
Abdullah Rashwan's avatar
Abdullah Rashwan committed
174
    else:
Abdullah Rashwan's avatar
Abdullah Rashwan committed
175
176
177
178
179
180
181
182
183
184
185
186
      metrics = []
      # These metrics destablize the training if included in training. The jobs
      # fail due to OOM.
      # TODO(arashwan): Investigate adding following metric to train.
      if not training:
        metrics = [
            tf.keras.metrics.AUC(
                name='globalPR-AUC',
                curve='PR',
                multi_label=False,
                from_logits=True),
            tf.keras.metrics.AUC(
Abdullah Rashwan's avatar
Abdullah Rashwan committed
187
                name='meanPR-AUC',
Abdullah Rashwan's avatar
Abdullah Rashwan committed
188
189
190
191
192
                curve='PR',
                multi_label=True,
                num_labels=self.task_config.model.num_classes,
                from_logits=True),
        ]
Abdullah Rashwan's avatar
Abdullah Rashwan committed
193
194
    return metrics

Fan Yang's avatar
Fan Yang committed
195
196
197
198
199
  def train_step(self,
                 inputs: Tuple[Any, Any],
                 model: tf.keras.Model,
                 optimizer: tf.keras.optimizers.Optimizer,
                 metrics: Optional[List[Any]] = None):
Abdullah Rashwan's avatar
Abdullah Rashwan committed
200
201
202
    """Does forward and backward.

    Args:
Fan Yang's avatar
Fan Yang committed
203
204
205
206
      inputs: A tuple of of input tensors of (features, labels).
      model: A tf.keras.Model instance.
      optimizer: The optimizer for this training step.
      metrics: A nested structure of metrics objects.
Abdullah Rashwan's avatar
Abdullah Rashwan committed
207
208
209
210
211

    Returns:
      A dictionary of logs.
    """
    features, labels = inputs
Abdullah Rashwan's avatar
Abdullah Rashwan committed
212
213
    is_multilabel = self.task_config.train_data.is_multilabel
    if self.task_config.losses.one_hot and not is_multilabel:
Abdullah Rashwan's avatar
Abdullah Rashwan committed
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
      labels = tf.one_hot(labels, self.task_config.model.num_classes)

    num_replicas = tf.distribute.get_strategy().num_replicas_in_sync
    with tf.GradientTape() as tape:
      outputs = model(features, training=True)
      # Casting output layer as float32 is necessary when mixed_precision is
      # mixed_float16 or mixed_bfloat16 to ensure output is casted as float32.
      outputs = tf.nest.map_structure(
          lambda x: tf.cast(x, tf.float32), outputs)

      # Computes per-replica loss.
      loss = self.build_losses(
          model_outputs=outputs, labels=labels, aux_losses=model.losses)
      # Scales loss as the default gradients allreduce performs sum inside the
      # optimizer.
      scaled_loss = loss / num_replicas

      # For mixed_precision policy, when LossScaleOptimizer is used, loss is
      # scaled for numerical stability.
      if isinstance(
Pankaj Kanwar's avatar
Pankaj Kanwar committed
234
          optimizer, tf.keras.mixed_precision.LossScaleOptimizer):
Abdullah Rashwan's avatar
Abdullah Rashwan committed
235
236
237
238
239
240
241
        scaled_loss = optimizer.get_scaled_loss(scaled_loss)

    tvars = model.trainable_variables
    grads = tape.gradient(scaled_loss, tvars)
    # Scales back gradient before apply_gradients when LossScaleOptimizer is
    # used.
    if isinstance(
Pankaj Kanwar's avatar
Pankaj Kanwar committed
242
        optimizer, tf.keras.mixed_precision.LossScaleOptimizer):
Abdullah Rashwan's avatar
Abdullah Rashwan committed
243
244
245
246
247
248
249
250
251
252
253
      grads = optimizer.get_unscaled_gradients(grads)
    optimizer.apply_gradients(list(zip(grads, tvars)))

    logs = {self.loss: loss}
    if metrics:
      self.process_metrics(metrics, labels, outputs)
    elif model.compiled_metrics:
      self.process_compiled_metrics(model.compiled_metrics, labels, outputs)
      logs.update({m.name: m.result() for m in model.metrics})
    return logs

Fan Yang's avatar
Fan Yang committed
254
255
256
257
258
  def validation_step(self,
                      inputs: Tuple[Any, Any],
                      model: tf.keras.Model,
                      metrics: Optional[List[Any]] = None):
    """Runs validatation step.
Abdullah Rashwan's avatar
Abdullah Rashwan committed
259
260

    Args:
Fan Yang's avatar
Fan Yang committed
261
262
263
      inputs: A tuple of of input tensors of (features, labels).
      model: A tf.keras.Model instance.
      metrics: A nested structure of metrics objects.
Abdullah Rashwan's avatar
Abdullah Rashwan committed
264
265
266
267
268

    Returns:
      A dictionary of logs.
    """
    features, labels = inputs
Abdullah Rashwan's avatar
Abdullah Rashwan committed
269
270
    is_multilabel = self.task_config.train_data.is_multilabel
    if self.task_config.losses.one_hot and not is_multilabel:
Abdullah Rashwan's avatar
Abdullah Rashwan committed
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
      labels = tf.one_hot(labels, self.task_config.model.num_classes)

    outputs = self.inference_step(features, model)
    outputs = tf.nest.map_structure(lambda x: tf.cast(x, tf.float32), outputs)
    loss = self.build_losses(model_outputs=outputs, labels=labels,
                             aux_losses=model.losses)

    logs = {self.loss: loss}
    if metrics:
      self.process_metrics(metrics, labels, outputs)
    elif model.compiled_metrics:
      self.process_compiled_metrics(model.compiled_metrics, labels, outputs)
      logs.update({m.name: m.result() for m in model.metrics})
    return logs

Fan Yang's avatar
Fan Yang committed
286
  def inference_step(self, inputs: tf.Tensor, model: tf.keras.Model):
Abdullah Rashwan's avatar
Abdullah Rashwan committed
287
288
    """Performs the forward step."""
    return model(inputs, training=False)