"include/ck/utility/get_id.hpp" did not exist on "1566b31736d191fe3a43dd5efa59968e44191729"
image_classification.py 11 KB
Newer Older
Yeqing Li's avatar
Yeqing Li committed
1
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
Abdullah Rashwan's avatar
Abdullah Rashwan committed
2
3
4
5
6
7
8
9
10
11
12
13
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Yeqing Li's avatar
Yeqing Li committed
14

Abdullah Rashwan's avatar
Abdullah Rashwan committed
15
"""Image classification task definition."""
Fan Yang's avatar
Fan Yang committed
16
from typing import Any, Optional, List, Tuple
Abdullah Rashwan's avatar
Abdullah Rashwan committed
17
from absl import logging
Abdullah Rashwan's avatar
Abdullah Rashwan committed
18
import tensorflow as tf
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
19

20
from official.common import dataset_fn
Abdullah Rashwan's avatar
Abdullah Rashwan committed
21
22
23
24
25
from official.core import base_task
from official.core import task_factory
from official.modeling import tf_utils
from official.vision.beta.configs import image_classification as exp_cfg
from official.vision.beta.dataloaders import classification_input
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
26
from official.vision.beta.dataloaders import input_reader_factory
27
from official.vision.beta.dataloaders import tfds_classification_decoders
Abdullah Rashwan's avatar
Abdullah Rashwan committed
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
from official.vision.beta.modeling import factory


@task_factory.register_task_cls(exp_cfg.ImageClassificationTask)
class ImageClassificationTask(base_task.Task):
  """A task for image classification."""

  def build_model(self):
    """Builds classification model."""
    input_specs = tf.keras.layers.InputSpec(
        shape=[None] + self.task_config.model.input_size)

    l2_weight_decay = self.task_config.losses.l2_weight_decay
    # Divide weight decay by 2.0 to match the implementation of tf.nn.l2_loss.
    # (https://www.tensorflow.org/api_docs/python/tf/keras/regularizers/l2)
    # (https://www.tensorflow.org/api_docs/python/tf/nn/l2_loss)
    l2_regularizer = (tf.keras.regularizers.l2(
        l2_weight_decay / 2.0) if l2_weight_decay else None)

    model = factory.build_classification_model(
        input_specs=input_specs,
        model_config=self.task_config.model,
        l2_regularizer=l2_regularizer)
    return model

Abdullah Rashwan's avatar
Abdullah Rashwan committed
53
  def initialize(self, model: tf.keras.Model):
Fan Yang's avatar
Fan Yang committed
54
    """Loads pretrained checkpoint."""
Abdullah Rashwan's avatar
Abdullah Rashwan committed
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
    if not self.task_config.init_checkpoint:
      return

    ckpt_dir_or_file = self.task_config.init_checkpoint
    if tf.io.gfile.isdir(ckpt_dir_or_file):
      ckpt_dir_or_file = tf.train.latest_checkpoint(ckpt_dir_or_file)

    # Restoring checkpoint.
    if self.task_config.init_checkpoint_modules == 'all':
      ckpt = tf.train.Checkpoint(**model.checkpoint_items)
      status = ckpt.restore(ckpt_dir_or_file)
      status.assert_consumed()
    elif self.task_config.init_checkpoint_modules == 'backbone':
      ckpt = tf.train.Checkpoint(backbone=model.backbone)
      status = ckpt.restore(ckpt_dir_or_file)
      status.expect_partial().assert_existing_objects_matched()
    else:
Yeqing Li's avatar
Yeqing Li committed
72
73
      raise ValueError(
          "Only 'all' or 'backbone' can be used to initialize the model.")
Abdullah Rashwan's avatar
Abdullah Rashwan committed
74
75
76
77

    logging.info('Finished loading pretrained checkpoint from %s',
                 ckpt_dir_or_file)

Abdullah Rashwan's avatar
Abdullah Rashwan committed
78
79
80
81
82
  def build_inputs(
      self,
      params: exp_cfg.DataConfig,
      input_context: Optional[tf.distribute.InputContext] = None
  ) -> tf.data.Dataset:
Abdullah Rashwan's avatar
Abdullah Rashwan committed
83
84
85
86
    """Builds classification input."""

    num_classes = self.task_config.model.num_classes
    input_size = self.task_config.model.input_size
Fan Yang's avatar
Fan Yang committed
87
88
    image_field_key = self.task_config.train_data.image_field_key
    label_field_key = self.task_config.train_data.label_field_key
Abdullah Rashwan's avatar
Abdullah Rashwan committed
89
    is_multilabel = self.task_config.train_data.is_multilabel
Abdullah Rashwan's avatar
Abdullah Rashwan committed
90

91
92
93
94
95
96
97
    if params.tfds_name:
      if params.tfds_name in tfds_classification_decoders.TFDS_ID_TO_DECODER_MAP:
        decoder = tfds_classification_decoders.TFDS_ID_TO_DECODER_MAP[
            params.tfds_name]()
      else:
        raise ValueError('TFDS {} is not supported'.format(params.tfds_name))
    else:
Fan Yang's avatar
Fan Yang committed
98
      decoder = classification_input.Decoder(
Abdullah Rashwan's avatar
Abdullah Rashwan committed
99
100
          image_field_key=image_field_key, label_field_key=label_field_key,
          is_multilabel=is_multilabel)
101

Abdullah Rashwan's avatar
Abdullah Rashwan committed
102
103
104
    parser = classification_input.Parser(
        output_size=input_size[:2],
        num_classes=num_classes,
Fan Yang's avatar
Fan Yang committed
105
106
        image_field_key=image_field_key,
        label_field_key=label_field_key,
Abdullah Rashwan's avatar
Abdullah Rashwan committed
107
        decode_jpeg_only=params.decode_jpeg_only,
108
109
        aug_rand_hflip=params.aug_rand_hflip,
        aug_type=params.aug_type,
Abdullah Rashwan's avatar
Abdullah Rashwan committed
110
        is_multilabel=is_multilabel,
Abdullah Rashwan's avatar
Abdullah Rashwan committed
111
112
        dtype=params.dtype)

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
113
    reader = input_reader_factory.input_reader_generator(
Abdullah Rashwan's avatar
Abdullah Rashwan committed
114
        params,
Rajagopal Ananthanarayanan's avatar
Rajagopal Ananthanarayanan committed
115
        dataset_fn=dataset_fn.pick_dataset_fn(params.file_type),
Abdullah Rashwan's avatar
Abdullah Rashwan committed
116
117
118
119
120
121
122
        decoder_fn=decoder.decode,
        parser_fn=parser.parse_fn(params.is_training))

    dataset = reader.read(input_context=input_context)

    return dataset

Fan Yang's avatar
Fan Yang committed
123
124
125
  def build_losses(self,
                   labels: tf.Tensor,
                   model_outputs: tf.Tensor,
Abdullah Rashwan's avatar
Abdullah Rashwan committed
126
                   aux_losses: Optional[Any] = None) -> tf.Tensor:
Fan Yang's avatar
Fan Yang committed
127
    """Builds sparse categorical cross entropy loss.
Abdullah Rashwan's avatar
Abdullah Rashwan committed
128
129

    Args:
Fan Yang's avatar
Fan Yang committed
130
      labels: Input groundtruth labels.
Abdullah Rashwan's avatar
Abdullah Rashwan committed
131
      model_outputs: Output logits of the classifier.
Fan Yang's avatar
Fan Yang committed
132
      aux_losses: The auxiliarly loss tensors, i.e. `losses` in tf.keras.Model.
Abdullah Rashwan's avatar
Abdullah Rashwan committed
133
134
135
136
137

    Returns:
      The total loss tensor.
    """
    losses_config = self.task_config.losses
Abdullah Rashwan's avatar
Abdullah Rashwan committed
138
139
140
141
142
143
144
145
146
147
148
149
    is_multilabel = self.task_config.train_data.is_multilabel

    if not is_multilabel:
      if losses_config.one_hot:
        total_loss = tf.keras.losses.categorical_crossentropy(
            labels,
            model_outputs,
            from_logits=True,
            label_smoothing=losses_config.label_smoothing)
      else:
        total_loss = tf.keras.losses.sparse_categorical_crossentropy(
            labels, model_outputs, from_logits=True)
Abdullah Rashwan's avatar
Abdullah Rashwan committed
150
    else:
Abdullah Rashwan's avatar
Abdullah Rashwan committed
151
152
153
154
      # Multi-label weighted binary cross entropy loss.
      total_loss = tf.nn.sigmoid_cross_entropy_with_logits(
          labels=labels, logits=model_outputs)
      total_loss = tf.reduce_sum(total_loss, axis=-1)
Abdullah Rashwan's avatar
Abdullah Rashwan committed
155
156
157
158
159
160
161

    total_loss = tf_utils.safe_mean(total_loss)
    if aux_losses:
      total_loss += tf.add_n(aux_losses)

    return total_loss

Abdullah Rashwan's avatar
Abdullah Rashwan committed
162
163
  def build_metrics(self,
                    training: bool = True) -> List[tf.keras.metrics.Metric]:
Abdullah Rashwan's avatar
Abdullah Rashwan committed
164
    """Gets streaming metrics for training/validation."""
Abdullah Rashwan's avatar
Abdullah Rashwan committed
165
166
167
168
169
170
171
172
173
174
175
176
177
    is_multilabel = self.task_config.train_data.is_multilabel
    if not is_multilabel:
      k = self.task_config.evaluation.top_k
      if self.task_config.losses.one_hot:
        metrics = [
            tf.keras.metrics.CategoricalAccuracy(name='accuracy'),
            tf.keras.metrics.TopKCategoricalAccuracy(
                k=k, name='top_{}_accuracy'.format(k))]
      else:
        metrics = [
            tf.keras.metrics.SparseCategoricalAccuracy(name='accuracy'),
            tf.keras.metrics.SparseTopKCategoricalAccuracy(
                k=k, name='top_{}_accuracy'.format(k))]
Abdullah Rashwan's avatar
Abdullah Rashwan committed
178
    else:
Abdullah Rashwan's avatar
Abdullah Rashwan committed
179
180
181
182
183
184
185
186
187
188
189
190
      metrics = []
      # These metrics destablize the training if included in training. The jobs
      # fail due to OOM.
      # TODO(arashwan): Investigate adding following metric to train.
      if not training:
        metrics = [
            tf.keras.metrics.AUC(
                name='globalPR-AUC',
                curve='PR',
                multi_label=False,
                from_logits=True),
            tf.keras.metrics.AUC(
Abdullah Rashwan's avatar
Abdullah Rashwan committed
191
                name='meanPR-AUC',
Abdullah Rashwan's avatar
Abdullah Rashwan committed
192
193
194
195
196
                curve='PR',
                multi_label=True,
                num_labels=self.task_config.model.num_classes,
                from_logits=True),
        ]
Abdullah Rashwan's avatar
Abdullah Rashwan committed
197
198
    return metrics

Fan Yang's avatar
Fan Yang committed
199
200
201
202
203
  def train_step(self,
                 inputs: Tuple[Any, Any],
                 model: tf.keras.Model,
                 optimizer: tf.keras.optimizers.Optimizer,
                 metrics: Optional[List[Any]] = None):
Abdullah Rashwan's avatar
Abdullah Rashwan committed
204
205
206
    """Does forward and backward.

    Args:
Fan Yang's avatar
Fan Yang committed
207
208
209
210
      inputs: A tuple of of input tensors of (features, labels).
      model: A tf.keras.Model instance.
      optimizer: The optimizer for this training step.
      metrics: A nested structure of metrics objects.
Abdullah Rashwan's avatar
Abdullah Rashwan committed
211
212
213
214
215

    Returns:
      A dictionary of logs.
    """
    features, labels = inputs
Abdullah Rashwan's avatar
Abdullah Rashwan committed
216
217
    is_multilabel = self.task_config.train_data.is_multilabel
    if self.task_config.losses.one_hot and not is_multilabel:
Abdullah Rashwan's avatar
Abdullah Rashwan committed
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
      labels = tf.one_hot(labels, self.task_config.model.num_classes)

    num_replicas = tf.distribute.get_strategy().num_replicas_in_sync
    with tf.GradientTape() as tape:
      outputs = model(features, training=True)
      # Casting output layer as float32 is necessary when mixed_precision is
      # mixed_float16 or mixed_bfloat16 to ensure output is casted as float32.
      outputs = tf.nest.map_structure(
          lambda x: tf.cast(x, tf.float32), outputs)

      # Computes per-replica loss.
      loss = self.build_losses(
          model_outputs=outputs, labels=labels, aux_losses=model.losses)
      # Scales loss as the default gradients allreduce performs sum inside the
      # optimizer.
      scaled_loss = loss / num_replicas

      # For mixed_precision policy, when LossScaleOptimizer is used, loss is
      # scaled for numerical stability.
      if isinstance(
Pankaj Kanwar's avatar
Pankaj Kanwar committed
238
          optimizer, tf.keras.mixed_precision.LossScaleOptimizer):
Abdullah Rashwan's avatar
Abdullah Rashwan committed
239
240
241
242
243
244
245
        scaled_loss = optimizer.get_scaled_loss(scaled_loss)

    tvars = model.trainable_variables
    grads = tape.gradient(scaled_loss, tvars)
    # Scales back gradient before apply_gradients when LossScaleOptimizer is
    # used.
    if isinstance(
Pankaj Kanwar's avatar
Pankaj Kanwar committed
246
        optimizer, tf.keras.mixed_precision.LossScaleOptimizer):
Abdullah Rashwan's avatar
Abdullah Rashwan committed
247
248
249
250
251
252
253
254
255
256
257
      grads = optimizer.get_unscaled_gradients(grads)
    optimizer.apply_gradients(list(zip(grads, tvars)))

    logs = {self.loss: loss}
    if metrics:
      self.process_metrics(metrics, labels, outputs)
    elif model.compiled_metrics:
      self.process_compiled_metrics(model.compiled_metrics, labels, outputs)
      logs.update({m.name: m.result() for m in model.metrics})
    return logs

Fan Yang's avatar
Fan Yang committed
258
259
260
261
262
  def validation_step(self,
                      inputs: Tuple[Any, Any],
                      model: tf.keras.Model,
                      metrics: Optional[List[Any]] = None):
    """Runs validatation step.
Abdullah Rashwan's avatar
Abdullah Rashwan committed
263
264

    Args:
Fan Yang's avatar
Fan Yang committed
265
266
267
      inputs: A tuple of of input tensors of (features, labels).
      model: A tf.keras.Model instance.
      metrics: A nested structure of metrics objects.
Abdullah Rashwan's avatar
Abdullah Rashwan committed
268
269
270
271
272

    Returns:
      A dictionary of logs.
    """
    features, labels = inputs
Abdullah Rashwan's avatar
Abdullah Rashwan committed
273
274
    is_multilabel = self.task_config.train_data.is_multilabel
    if self.task_config.losses.one_hot and not is_multilabel:
Abdullah Rashwan's avatar
Abdullah Rashwan committed
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
      labels = tf.one_hot(labels, self.task_config.model.num_classes)

    outputs = self.inference_step(features, model)
    outputs = tf.nest.map_structure(lambda x: tf.cast(x, tf.float32), outputs)
    loss = self.build_losses(model_outputs=outputs, labels=labels,
                             aux_losses=model.losses)

    logs = {self.loss: loss}
    if metrics:
      self.process_metrics(metrics, labels, outputs)
    elif model.compiled_metrics:
      self.process_compiled_metrics(model.compiled_metrics, labels, outputs)
      logs.update({m.name: m.result() for m in model.metrics})
    return logs

Fan Yang's avatar
Fan Yang committed
290
  def inference_step(self, inputs: tf.Tensor, model: tf.keras.Model):
Abdullah Rashwan's avatar
Abdullah Rashwan committed
291
292
    """Performs the forward step."""
    return model(inputs, training=False)