imagenet_main.py 8.49 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
15
"""Runs a ResNet model on the ImageNet dataset."""
16
17
18
19
20
21
22

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import argparse
import os
23
import sys
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

import tensorflow as tf

import resnet_model
import vgg_preprocessing

parser = argparse.ArgumentParser()

parser.add_argument(
    '--data_dir', type=str, default='',
    help='The directory where the ImageNet input data is stored.')

parser.add_argument(
    '--model_dir', type=str, default='/tmp/resnet_model',
    help='The directory where the model will be stored.')

parser.add_argument(
    '--resnet_size', type=int, default=50, choices=[18, 34, 50, 101, 152, 200],
    help='The size of the ResNet model to use.')

parser.add_argument(
45
46
    '--train_epochs', type=int, default=100,
    help='The number of epochs to use for training.')
47
48

parser.add_argument(
49
50
    '--epochs_per_eval', type=int, default=1,
    help='The number of training epochs to run between evaluations.')
51
52

parser.add_argument(
53
54
    '--batch_size', type=int, default=32,
    help='Batch size for training and evaluation.')
55

56
_DEFAULT_IMAGE_SIZE = 224
57
58
_NUM_CHANNELS = 3
_LABEL_CLASSES = 1001
59
60
61
62

_MOMENTUM = 0.9
_WEIGHT_DECAY = 1e-4

63
64
65
66
_NUM_IMAGES = {
    'train': 1281167,
    'validation': 50000,
}
67

68
69
70
71
72
73

def filenames(is_training):
  """Return filenames for dataset."""
  if is_training:
    return [
        os.path.join(FLAGS.data_dir, 'train-%05d-of-01024' % i)
Amit Patankar's avatar
Amit Patankar committed
74
        for i in range(0, 1024)]
75
76
77
  else:
    return [
        os.path.join(FLAGS.data_dir, 'validation-%05d-of-00128' % i)
Amit Patankar's avatar
Amit Patankar committed
78
        for i in range(0, 128)]
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104


def dataset_parser(value, is_training):
  """Parse an Imagenet record from value."""
  keys_to_features = {
      'image/encoded':
          tf.FixedLenFeature((), tf.string, default_value=''),
      'image/format':
          tf.FixedLenFeature((), tf.string, default_value='jpeg'),
      'image/class/label':
          tf.FixedLenFeature([], dtype=tf.int64, default_value=-1),
      'image/class/text':
          tf.FixedLenFeature([], dtype=tf.string, default_value=''),
      'image/object/bbox/xmin':
          tf.VarLenFeature(dtype=tf.float32),
      'image/object/bbox/ymin':
          tf.VarLenFeature(dtype=tf.float32),
      'image/object/bbox/xmax':
          tf.VarLenFeature(dtype=tf.float32),
      'image/object/bbox/ymax':
          tf.VarLenFeature(dtype=tf.float32),
      'image/object/class/label':
          tf.VarLenFeature(dtype=tf.int64),
  }

  parsed = tf.parse_single_example(value, keys_to_features)
105

106
107
108
109
110
  image = tf.image.decode_image(
      tf.reshape(parsed['image/encoded'], shape=[]),
      _NUM_CHANNELS)
  image = tf.image.convert_image_dtype(image, dtype=tf.float32)

111
  image = vgg_preprocessing.preprocess_image(
112
      image=image,
113
114
      output_height=_DEFAULT_IMAGE_SIZE,
      output_width=_DEFAULT_IMAGE_SIZE,
115
116
117
118
119
120
121
      is_training=is_training)

  label = tf.cast(
      tf.reshape(parsed['image/class/label'], shape=[]),
      dtype=tf.int32)

  return image, tf.one_hot(label, _LABEL_CLASSES)
122
123


124
125
def input_fn(is_training, num_epochs=1):
  """Input function which provides batches for train or eval."""
126
127
128
129
130
131
  dataset = tf.contrib.data.Dataset.from_tensor_slices(filenames(is_training))
  if is_training:
    dataset = dataset.shuffle(buffer_size=1024)
  dataset = dataset.flat_map(tf.contrib.data.TFRecordDataset)

  if is_training:
132
    dataset = dataset.repeat(num_epochs)
133
134

  dataset = dataset.map(lambda value: dataset_parser(value, is_training),
135
                        num_threads=5,
136
137
138
139
140
141
142
143
                        output_buffer_size=FLAGS.batch_size)

  if is_training:
    buffer_size = 1250 + 2 * FLAGS.batch_size
    dataset = dataset.shuffle(buffer_size=buffer_size)

  iterator = dataset.batch(FLAGS.batch_size).make_one_shot_iterator()
  images, labels = iterator.get_next()
144
145
146
147
  return images, labels


def resnet_model_fn(features, labels, mode):
148
  """Our model_fn for ResNet to be used with our Estimator."""
149
150
  tf.summary.image('images', features, max_outputs=6)

151
152
  network = resnet_model.resnet_v2(
      resnet_size=FLAGS.resnet_size, num_classes=_LABEL_CLASSES)
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
  logits = network(
      inputs=features, is_training=(mode == tf.estimator.ModeKeys.TRAIN))

  predictions = {
      'classes': tf.argmax(logits, axis=1),
      'probabilities': tf.nn.softmax(logits, name='softmax_tensor')
  }

  if mode == tf.estimator.ModeKeys.PREDICT:
    return tf.estimator.EstimatorSpec(mode=mode, predictions=predictions)

  # Calculate loss, which includes softmax cross entropy and L2 regularization.
  cross_entropy = tf.losses.softmax_cross_entropy(
      logits=logits, onehot_labels=labels)

  # Create a tensor named cross_entropy for logging purposes.
  tf.identity(cross_entropy, name='cross_entropy')
  tf.summary.scalar('cross_entropy', cross_entropy)

  # Add weight decay to the loss. We perform weight decay on all trainable
  # variables, which includes batch norm beta and gamma variables.
  loss = cross_entropy + _WEIGHT_DECAY * tf.add_n(
      [tf.nn.l2_loss(v) for v in tf.trainable_variables()])

  if mode == tf.estimator.ModeKeys.TRAIN:
178
179
180
181
    # Scale the learning rate linearly with the batch size. When the batch size is
    # 256, the learning rate should be 0.1.
    initial_learning_rate = 0.1 * FLAGS.batch_size / 256
    batches_per_epoch = _NUM_IMAGES['train'] / FLAGS.batch_size
182
183
    global_step = tf.train.get_or_create_global_step()

184
    # Multiply the learning rate by 0.1 at 30, 60, 80, and 90 epochs.
185
    boundaries = [
186
        int(batches_per_epoch * epoch) for epoch in [30, 60, 80, 90]]
187
    values = [
188
        initial_learning_rate * decay for decay in [1, 0.1, 0.01, 1e-3, 1e-4]]
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
    learning_rate = tf.train.piecewise_constant(
        tf.cast(global_step, tf.int32), boundaries, values)

    # Create a tensor named learning_rate for logging purposes.
    tf.identity(learning_rate, name='learning_rate')
    tf.summary.scalar('learning_rate', learning_rate)

    optimizer = tf.train.MomentumOptimizer(
        learning_rate=learning_rate,
        momentum=_MOMENTUM)

    # Batch norm requires update_ops to be added as a train_op dependency.
    update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS)
    with tf.control_dependencies(update_ops):
      train_op = optimizer.minimize(loss, global_step)
  else:
    train_op = None

  accuracy = tf.metrics.accuracy(
      tf.argmax(labels, axis=1), predictions['classes'])
  metrics = {'accuracy': accuracy}

  # Create a tensor named train_accuracy for logging purposes.
  tf.identity(accuracy[1], name='train_accuracy')
  tf.summary.scalar('train_accuracy', accuracy[1])

  return tf.estimator.EstimatorSpec(
      mode=mode,
      predictions=predictions,
      loss=loss,
      train_op=train_op,
      eval_metric_ops=metrics)


def main(unused_argv):
  # Using the Winograd non-fused algorithms provides a small performance boost.
  os.environ['TF_ENABLE_WINOGRAD_NONFUSED'] = '1'

227
228
  # Set up a RunConfig to only save checkpoints once per training cycle.
  run_config = tf.estimator.RunConfig().replace(save_checkpoints_secs=1e9)
229
  resnet_classifier = tf.estimator.Estimator(
230
      model_fn=resnet_model_fn, model_dir=FLAGS.model_dir, config=run_config)
231

232
  for _ in range(FLAGS.train_epochs // FLAGS.epochs_per_eval):
233
234
235
236
237
238
239
240
241
242
243
    tensors_to_log = {
        'learning_rate': 'learning_rate',
        'cross_entropy': 'cross_entropy',
        'train_accuracy': 'train_accuracy'
    }

    logging_hook = tf.train.LoggingTensorHook(
        tensors=tensors_to_log, every_n_iter=100)

    print('Starting a training cycle.')
    resnet_classifier.train(
244
245
        input_fn=lambda: input_fn(
            is_training=True, num_epochs=FLAGS.epochs_per_eval),
246
247
248
        hooks=[logging_hook])

    print('Starting to evaluate.')
249
250
    eval_results = resnet_classifier.evaluate(
        input_fn=lambda: input_fn(is_training=False))
251
252
253
254
255
    print(eval_results)


if __name__ == '__main__':
  tf.logging.set_verbosity(tf.logging.INFO)
256
257
  FLAGS, unparsed = parser.parse_known_args()
  tf.app.run(argv=[sys.argv[0]] + unparsed)