nets_factory.py 7.29 KB
Newer Older
1
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Contains a factory for building various models."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import functools
21
from tensorflow.contrib import slim as contrib_slim
22
23
24

from nets import alexnet
from nets import cifarnet
25
from nets import i3d
26
27
from nets import inception
from nets import lenet
andrewghoward's avatar
andrewghoward committed
28
from nets import mobilenet_v1
29
30
31
from nets import overfeat
from nets import resnet_v1
from nets import resnet_v2
32
from nets import s3dg
33
from nets import vgg
34
from nets.mobilenet import mobilenet_v2
35
from nets.nasnet import nasnet
maximneumann's avatar
maximneumann committed
36
from nets.nasnet import pnasnet
37

38

39
slim = contrib_slim
40
41
42
43
44
45
46
47
48
49

networks_map = {'alexnet_v2': alexnet.alexnet_v2,
                'cifarnet': cifarnet.cifarnet,
                'overfeat': overfeat.overfeat,
                'vgg_a': vgg.vgg_a,
                'vgg_16': vgg.vgg_16,
                'vgg_19': vgg.vgg_19,
                'inception_v1': inception.inception_v1,
                'inception_v2': inception.inception_v2,
                'inception_v3': inception.inception_v3,
Alex Kurakin's avatar
Alex Kurakin committed
50
                'inception_v4': inception.inception_v4,
51
                'inception_resnet_v2': inception.inception_resnet_v2,
52
53
                'i3d': i3d.i3d,
                's3dg': s3dg.s3dg,
54
55
56
57
58
59
60
61
62
                'lenet': lenet.lenet,
                'resnet_v1_50': resnet_v1.resnet_v1_50,
                'resnet_v1_101': resnet_v1.resnet_v1_101,
                'resnet_v1_152': resnet_v1.resnet_v1_152,
                'resnet_v1_200': resnet_v1.resnet_v1_200,
                'resnet_v2_50': resnet_v2.resnet_v2_50,
                'resnet_v2_101': resnet_v2.resnet_v2_101,
                'resnet_v2_152': resnet_v2.resnet_v2_152,
                'resnet_v2_200': resnet_v2.resnet_v2_200,
andrewghoward's avatar
andrewghoward committed
63
                'mobilenet_v1': mobilenet_v1.mobilenet_v1,
Pete Warden's avatar
Pete Warden committed
64
65
66
                'mobilenet_v1_075': mobilenet_v1.mobilenet_v1_075,
                'mobilenet_v1_050': mobilenet_v1.mobilenet_v1_050,
                'mobilenet_v1_025': mobilenet_v1.mobilenet_v1_025,
67
                'mobilenet_v2': mobilenet_v2.mobilenet,
68
69
                'mobilenet_v2_140': mobilenet_v2.mobilenet_v2_140,
                'mobilenet_v2_035': mobilenet_v2.mobilenet_v2_035,
70
71
72
                'nasnet_cifar': nasnet.build_nasnet_cifar,
                'nasnet_mobile': nasnet.build_nasnet_mobile,
                'nasnet_large': nasnet.build_nasnet_large,
maximneumann's avatar
maximneumann committed
73
                'pnasnet_large': pnasnet.build_pnasnet_large,
74
                'pnasnet_mobile': pnasnet.build_pnasnet_mobile,
75
76
77
78
79
80
81
82
83
84
85
               }

arg_scopes_map = {'alexnet_v2': alexnet.alexnet_v2_arg_scope,
                  'cifarnet': cifarnet.cifarnet_arg_scope,
                  'overfeat': overfeat.overfeat_arg_scope,
                  'vgg_a': vgg.vgg_arg_scope,
                  'vgg_16': vgg.vgg_arg_scope,
                  'vgg_19': vgg.vgg_arg_scope,
                  'inception_v1': inception.inception_v3_arg_scope,
                  'inception_v2': inception.inception_v3_arg_scope,
                  'inception_v3': inception.inception_v3_arg_scope,
Alex Kurakin's avatar
Alex Kurakin committed
86
                  'inception_v4': inception.inception_v4_arg_scope,
87
88
                  'inception_resnet_v2':
                  inception.inception_resnet_v2_arg_scope,
89
90
                  'i3d': i3d.i3d_arg_scope,
                  's3dg': s3dg.s3dg_arg_scope,
91
92
93
94
95
96
97
98
99
                  'lenet': lenet.lenet_arg_scope,
                  'resnet_v1_50': resnet_v1.resnet_arg_scope,
                  'resnet_v1_101': resnet_v1.resnet_arg_scope,
                  'resnet_v1_152': resnet_v1.resnet_arg_scope,
                  'resnet_v1_200': resnet_v1.resnet_arg_scope,
                  'resnet_v2_50': resnet_v2.resnet_arg_scope,
                  'resnet_v2_101': resnet_v2.resnet_arg_scope,
                  'resnet_v2_152': resnet_v2.resnet_arg_scope,
                  'resnet_v2_200': resnet_v2.resnet_arg_scope,
andrewghoward's avatar
andrewghoward committed
100
                  'mobilenet_v1': mobilenet_v1.mobilenet_v1_arg_scope,
Pete Warden's avatar
Pete Warden committed
101
102
103
                  'mobilenet_v1_075': mobilenet_v1.mobilenet_v1_arg_scope,
                  'mobilenet_v1_050': mobilenet_v1.mobilenet_v1_arg_scope,
                  'mobilenet_v1_025': mobilenet_v1.mobilenet_v1_arg_scope,
104
                  'mobilenet_v2': mobilenet_v2.training_scope,
105
106
                  'mobilenet_v2_035': mobilenet_v2.training_scope,
                  'mobilenet_v2_140': mobilenet_v2.training_scope,
107
108
109
                  'nasnet_cifar': nasnet.nasnet_cifar_arg_scope,
                  'nasnet_mobile': nasnet.nasnet_mobile_arg_scope,
                  'nasnet_large': nasnet.nasnet_large_arg_scope,
maximneumann's avatar
maximneumann committed
110
                  'pnasnet_large': pnasnet.pnasnet_large_arg_scope,
111
                  'pnasnet_mobile': pnasnet.pnasnet_mobile_arg_scope,
112
113
114
115
116
117
118
119
                 }


def get_network_fn(name, num_classes, weight_decay=0.0, is_training=False):
  """Returns a network_fn such as `logits, end_points = network_fn(images)`.

  Args:
    name: The name of the network.
120
121
    num_classes: The number of classes to use for classification. If 0 or None,
      the logits layer is omitted and its input features are returned instead.
122
123
124
125
126
127
128
    weight_decay: The l2 coefficient for the model weights.
    is_training: `True` if the model is being used for training and `False`
      otherwise.

  Returns:
    network_fn: A function that applies the model to a batch of images. It has
      the following signature:
129
          net, end_points = network_fn(images)
130
131
132
      The `images` input is a tensor of shape [batch_size, height, width, 3 or
       1] with height = width = network_fn.default_image_size. (The
      permissibility and treatment of other sizes depends on the network_fn.)
133
134
135
136
137
138
139
140
141
142
      The returned `end_points` are a dictionary of intermediate activations.
      The returned `net` is the topmost layer, depending on `num_classes`:
      If `num_classes` was a non-zero integer, `net` is a logits tensor
      of shape [batch_size, num_classes].
      If `num_classes` was 0 or `None`, `net` is a tensor with the input
      to the logits layer of shape [batch_size, 1, 1, num_features] or
      [batch_size, num_features]. Dropout has not been applied to this
      (even if the network's original classification does); it remains for
      the caller to do this or not.

143
144
145
146
147
148
149
  Raises:
    ValueError: If network `name` is not recognized.
  """
  if name not in networks_map:
    raise ValueError('Name of network unknown %s' % name)
  func = networks_map[name]
  @functools.wraps(func)
150
  def network_fn(images, **kwargs):
151
    arg_scope = arg_scopes_map[name](weight_decay=weight_decay)
152
    with slim.arg_scope(arg_scope):
153
154
      return func(images, num_classes=num_classes, is_training=is_training,
                  **kwargs)
155
156
157
158
  if hasattr(func, 'default_image_size'):
    network_fn.default_image_size = func.default_image_size

  return network_fn