Commit 50ec3371 authored by Neal Wu's avatar Neal Wu
Browse files

Fix reversions plus a few improvements

parent 252fffb2
...@@ -196,24 +196,20 @@ Model | TF-Slim File | Checkpoint | Top-1 Accuracy| Top-5 Accuracy | ...@@ -196,24 +196,20 @@ Model | TF-Slim File | Checkpoint | Top-1 Accuracy| Top-5 Accuracy |
[Inception V2](http://arxiv.org/abs/1502.03167)|[Code](https://github.com/tensorflow/models/blob/master/slim/nets/inception_v2.py)|[inception_v2_2016_08_28.tar.gz](http://download.tensorflow.org/models/inception_v2_2016_08_28.tar.gz)|73.9|91.8| [Inception V2](http://arxiv.org/abs/1502.03167)|[Code](https://github.com/tensorflow/models/blob/master/slim/nets/inception_v2.py)|[inception_v2_2016_08_28.tar.gz](http://download.tensorflow.org/models/inception_v2_2016_08_28.tar.gz)|73.9|91.8|
[Inception V3](http://arxiv.org/abs/1512.00567)|[Code](https://github.com/tensorflow/models/blob/master/slim/nets/inception_v3.py)|[inception_v3_2016_08_28.tar.gz](http://download.tensorflow.org/models/inception_v3_2016_08_28.tar.gz)|78.0|93.9| [Inception V3](http://arxiv.org/abs/1512.00567)|[Code](https://github.com/tensorflow/models/blob/master/slim/nets/inception_v3.py)|[inception_v3_2016_08_28.tar.gz](http://download.tensorflow.org/models/inception_v3_2016_08_28.tar.gz)|78.0|93.9|
[Inception V4](http://arxiv.org/abs/1602.07261)|[Code](https://github.com/tensorflow/models/blob/master/slim/nets/inception_v4.py)|[inception_v4_2016_09_09.tar.gz](http://download.tensorflow.org/models/inception_v4_2016_09_09.tar.gz)|80.2|95.2| [Inception V4](http://arxiv.org/abs/1602.07261)|[Code](https://github.com/tensorflow/models/blob/master/slim/nets/inception_v4.py)|[inception_v4_2016_09_09.tar.gz](http://download.tensorflow.org/models/inception_v4_2016_09_09.tar.gz)|80.2|95.2|
[Inception-ResNet-v2](http://arxiv.org/abs/1602.07261)|[Code](https://github.com/tensorflow/models/blob/master/slim/nets/inception_resnet_v2.py)|[inception_resnet_v2_2016_08_30.tar.gz](http://download.tensorflow.org/models/inception_resnet_v2_2016_08_30.tar.gz)|80.4|95.3| [Inception-ResNet-v2](http://arxiv.org/abs/1602.07261)|[Code](https://github.com/tensorflow/models/blob/master/slim/nets/inception_resnet_v2.py)|[inception_resnet_v2.tar.gz](http://download.tensorflow.org/models/inception_resnet_v2_2016_08_30.tar.gz)|80.4|95.3|
[ResNet V1 50](https://arxiv.org/abs/1512.03385)|[Code](https://github.com/tensorflow/models/blob/master/slim/nets/resnet_v1.py)|[resnet_v1_50_2016_08_28.tar.gz](http://download.tensorflow.org/models/resnet_v1_50_2016_08_28.tar.gz)|75.2|92.2| [ResNet V1 50](https://arxiv.org/abs/1512.03385)|[Code](https://github.com/tensorflow/models/blob/master/slim/nets/resnet_v1.py)|[resnet_v1_50.tar.gz](http://download.tensorflow.org/models/resnet_v1_50_2016_08_28.tar.gz)|75.2|92.2|
[ResNet V1 101](https://arxiv.org/abs/1512.03385)|[Code](https://github.com/tensorflow/models/blob/master/slim/nets/resnet_v1.py)|[resnet_v1_101_2016_08_28.tar.gz](http://download.tensorflow.org/models/resnet_v1_101_2016_08_28.tar.gz)|76.4|92.9| [ResNet V1 101](https://arxiv.org/abs/1512.03385)|[Code](https://github.com/tensorflow/models/blob/master/slim/nets/resnet_v1.py)|[resnet_v1_101.tar.gz](http://download.tensorflow.org/models/resnet_v1_101_2016_08_28.tar.gz)|76.4|92.9|
[ResNet V1 152](https://arxiv.org/abs/1512.03385)|[Code](https://github.com/tensorflow/models/blob/master/slim/nets/resnet_v1.py)|[resnet_v1_152_2016_08_28.tar.gz](http://download.tensorflow.org/models/resnet_v1_152_2016_08_28.tar.gz)|76.8|93.2| [ResNet V1 152](https://arxiv.org/abs/1512.03385)|[Code](https://github.com/tensorflow/models/blob/master/slim/nets/resnet_v1.py)|[resnet_v1_152.tar.gz](http://download.tensorflow.org/models/resnet_v1_152_2016_08_28.tar.gz)|76.8|93.2|
[ResNet V2 50](https://arxiv.org/abs/1603.05027)^|[Code](https://github.com/tensorflow/models/blob/master/slim/nets/resnet_v2.py)|[resnet_v2_50_2017_04_14.tar.gz](http://download.tensorflow.org/models/resnet_v2_50_2017_04_14.tar.gz)|75.6|92.8| [ResNet V2 50](https://arxiv.org/abs/1603.05027)^|[Code](https://github.com/tensorflow/models/blob/master/slim/nets/resnet_v2.py)|[resnet_v2_50.tar.gz](http://download.tensorflow.org/models/resnet_v2_50_2017_04_14.tar.gz)|75.6|92.8|
[ResNet V2 101](https://arxiv.org/abs/1603.05027)^|[Code](https://github.com/tensorflow/models/blob/master/slim/nets/resnet_v2.py)|[resnet_v2_101_2017_04_14.tar.gz](http://download.tensorflow.org/models/resnet_v2_101_2017_04_14.tar.gz)|77.0|93.7| [ResNet V2 101](https://arxiv.org/abs/1603.05027)^|[Code](https://github.com/tensorflow/models/blob/master/slim/nets/resnet_v2.py)|[resnet_v2_101.tar.gz](http://download.tensorflow.org/models/resnet_v2_101_2017_04_14.tar.gz)|77.0|93.7|
[ResNet V2 152](https://arxiv.org/abs/1603.05027)^|[Code](https://github.com/tensorflow/models/blob/master/slim/nets/resnet_v2.py)|[resnet_v2_152_2017_04_14.tar.gz](http://download.tensorflow.org/models/resnet_v2_152_2017_04_14.tar.gz)|77.8|94.1| [ResNet V2 152](https://arxiv.org/abs/1603.05027)^|[Code](https://github.com/tensorflow/models/blob/master/slim/nets/resnet_v2.py)|[resnet_v2_152.tar.gz](http://download.tensorflow.org/models/resnet_v2_152_2017_04_14.tar.gz)|77.8|94.1|
[ResNet V2 200](https://arxiv.org/abs/1603.05027)|[Code](https://github.com/tensorflow/models/blob/master/slim/nets/resnet_v2.py)|[TBA]()|79.9\*|95.2\*| [VGG 16](http://arxiv.org/abs/1409.1556.pdf)|[Code](https://github.com/tensorflow/models/blob/master/slim/nets/vgg.py)|[vgg_16.tar.gz](http://download.tensorflow.org/models/vgg_16_2016_08_28.tar.gz)|71.5|89.8|
[VGG 16](http://arxiv.org/abs/1409.1556.pdf)|[Code](https://github.com/tensorflow/models/blob/master/slim/nets/vgg.py)|[vgg_16_2016_08_28.tar.gz](http://download.tensorflow.org/models/vgg_16_2016_08_28.tar.gz)|71.5|89.8| [VGG 19](http://arxiv.org/abs/1409.1556.pdf)|[Code](https://github.com/tensorflow/models/blob/master/slim/nets/vgg.py)|[vgg_19.tar.gz](http://download.tensorflow.org/models/vgg_19_2016_08_28.tar.gz)|71.1|89.8|
[VGG 19](http://arxiv.org/abs/1409.1556.pdf)|[Code](https://github.com/tensorflow/models/blob/master/slim/nets/vgg.py)|[vgg_19_2016_08_28.tar.gz](http://download.tensorflow.org/models/vgg_19_2016_08_28.tar.gz)|71.1|89.8|
[MobileNet_v1_1.0_224](https://arxiv.org/pdf/1704.04861.pdf)|[Code](https://github.com/tensorflow/models/blob/master/slim/nets/mobilenet_v1.py)|[mobilenet_v1_1.0_224_2017_06_14.tar.gz](http://download.tensorflow.org/models/mobilenet_v1_1.0_224_2017_06_14.tar.gz)|70.7|89.5|
[MobileNet_v1_0.50_160](https://arxiv.org/pdf/1704.04861.pdf)|[Code](https://github.com/tensorflow/models/blob/master/slim/nets/mobilenet_v1.py)|[mobilenet_v1_0.50_160_2017_06_14.tar.gz](http://download.tensorflow.org/models/mobilenet_v1_0.50_160_2017_06_14.tar.gz)|59.9|82.5|
[MobileNet_v1_0.25_128](https://arxiv.org/pdf/1704.04861.pdf)|[Code](https://github.com/tensorflow/models/blob/master/slim/nets/mobilenet_v1.py)|[mobilenet_v1_0.25_128_2017_06_14.tar.gz](http://download.tensorflow.org/models/mobilenet_v1_0.25_128_2017_06_14.tar.gz)|41.3|66.2|
^ ResNet V2 models use Inception pre-processing and input image size of 299 (use ^ ResNet V2 models use Inception pre-processing and input image size of 299 (use
`--preprocessing_name inception --eval_image_size 299` when using `--preprocessing_name inception --eval_image_size 299` when using
`eval_image_classifier.py`). Performance numbers for ResNet V2 models are `eval_image_classifier.py`). Performance numbers for ResNet V2 models are
reported on ImageNet valdiation set. reported on the ImageNet validation set.
All 16 MobileNet Models reported in the [MobileNet Paper](https://arxiv.org/abs/1704.04861) can be found [here](https://github.com/tensorflow/models/tree/master/slim/nets/mobilenet_v1.md). All 16 MobileNet Models reported in the [MobileNet Paper](https://arxiv.org/abs/1704.04861) can be found [here](https://github.com/tensorflow/models/tree/master/slim/nets/mobilenet_v1.md).
......
...@@ -100,10 +100,10 @@ def get_network_fn(name, num_classes, weight_decay=0.0, is_training=False): ...@@ -100,10 +100,10 @@ def get_network_fn(name, num_classes, weight_decay=0.0, is_training=False):
""" """
if name not in networks_map: if name not in networks_map:
raise ValueError('Name of network unknown %s' % name) raise ValueError('Name of network unknown %s' % name)
arg_scope = arg_scopes_map[name](weight_decay=weight_decay)
func = networks_map[name] func = networks_map[name]
@functools.wraps(func) @functools.wraps(func)
def network_fn(images): def network_fn(images):
arg_scope = arg_scopes_map[name](weight_decay=weight_decay)
with slim.arg_scope(arg_scope): with slim.arg_scope(arg_scope):
return func(images, num_classes, is_training=is_training) return func(images, num_classes, is_training=is_training)
if hasattr(func, 'default_image_size'): if hasattr(func, 'default_image_size'):
......
...@@ -57,6 +57,11 @@ def get_preprocessing(name, is_training=False): ...@@ -57,6 +57,11 @@ def get_preprocessing(name, is_training=False):
'resnet_v1_50': vgg_preprocessing, 'resnet_v1_50': vgg_preprocessing,
'resnet_v1_101': vgg_preprocessing, 'resnet_v1_101': vgg_preprocessing,
'resnet_v1_152': vgg_preprocessing, 'resnet_v1_152': vgg_preprocessing,
'resnet_v1_200': vgg_preprocessing,
'resnet_v2_50': vgg_preprocessing,
'resnet_v2_101': vgg_preprocessing,
'resnet_v2_152': vgg_preprocessing,
'resnet_v2_200': vgg_preprocessing,
'vgg': vgg_preprocessing, 'vgg': vgg_preprocessing,
'vgg_a': vgg_preprocessing, 'vgg_a': vgg_preprocessing,
'vgg_16': vgg_preprocessing, 'vgg_16': vgg_preprocessing,
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment