nets_factory.py 6.33 KB
Newer Older
1
# Copyright 2017 The TensorFlow Authors. All Rights Reserved.
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Contains a factory for building various models."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import functools

import tensorflow as tf

from nets import alexnet
from nets import cifarnet
from nets import inception
from nets import lenet
andrewghoward's avatar
andrewghoward committed
28
from nets import mobilenet_v1
29
30
31
32
from nets import overfeat
from nets import resnet_v1
from nets import resnet_v2
from nets import vgg
33
from nets.nasnet import nasnet
34
35
36
37
38
39
40
41
42
43
44
45

slim = tf.contrib.slim

networks_map = {'alexnet_v2': alexnet.alexnet_v2,
                'cifarnet': cifarnet.cifarnet,
                'overfeat': overfeat.overfeat,
                'vgg_a': vgg.vgg_a,
                'vgg_16': vgg.vgg_16,
                'vgg_19': vgg.vgg_19,
                'inception_v1': inception.inception_v1,
                'inception_v2': inception.inception_v2,
                'inception_v3': inception.inception_v3,
Alex Kurakin's avatar
Alex Kurakin committed
46
                'inception_v4': inception.inception_v4,
47
48
49
50
51
52
53
54
55
56
                'inception_resnet_v2': inception.inception_resnet_v2,
                'lenet': lenet.lenet,
                'resnet_v1_50': resnet_v1.resnet_v1_50,
                'resnet_v1_101': resnet_v1.resnet_v1_101,
                'resnet_v1_152': resnet_v1.resnet_v1_152,
                'resnet_v1_200': resnet_v1.resnet_v1_200,
                'resnet_v2_50': resnet_v2.resnet_v2_50,
                'resnet_v2_101': resnet_v2.resnet_v2_101,
                'resnet_v2_152': resnet_v2.resnet_v2_152,
                'resnet_v2_200': resnet_v2.resnet_v2_200,
andrewghoward's avatar
andrewghoward committed
57
                'mobilenet_v1': mobilenet_v1.mobilenet_v1,
Pete Warden's avatar
Pete Warden committed
58
59
60
                'mobilenet_v1_075': mobilenet_v1.mobilenet_v1_075,
                'mobilenet_v1_050': mobilenet_v1.mobilenet_v1_050,
                'mobilenet_v1_025': mobilenet_v1.mobilenet_v1_025,
61
62
63
                'nasnet_cifar': nasnet.build_nasnet_cifar,
                'nasnet_mobile': nasnet.build_nasnet_mobile,
                'nasnet_large': nasnet.build_nasnet_large,
64
65
66
67
68
69
70
71
72
73
74
               }

arg_scopes_map = {'alexnet_v2': alexnet.alexnet_v2_arg_scope,
                  'cifarnet': cifarnet.cifarnet_arg_scope,
                  'overfeat': overfeat.overfeat_arg_scope,
                  'vgg_a': vgg.vgg_arg_scope,
                  'vgg_16': vgg.vgg_arg_scope,
                  'vgg_19': vgg.vgg_arg_scope,
                  'inception_v1': inception.inception_v3_arg_scope,
                  'inception_v2': inception.inception_v3_arg_scope,
                  'inception_v3': inception.inception_v3_arg_scope,
Alex Kurakin's avatar
Alex Kurakin committed
75
                  'inception_v4': inception.inception_v4_arg_scope,
76
77
78
79
80
81
82
83
84
85
86
                  'inception_resnet_v2':
                  inception.inception_resnet_v2_arg_scope,
                  'lenet': lenet.lenet_arg_scope,
                  'resnet_v1_50': resnet_v1.resnet_arg_scope,
                  'resnet_v1_101': resnet_v1.resnet_arg_scope,
                  'resnet_v1_152': resnet_v1.resnet_arg_scope,
                  'resnet_v1_200': resnet_v1.resnet_arg_scope,
                  'resnet_v2_50': resnet_v2.resnet_arg_scope,
                  'resnet_v2_101': resnet_v2.resnet_arg_scope,
                  'resnet_v2_152': resnet_v2.resnet_arg_scope,
                  'resnet_v2_200': resnet_v2.resnet_arg_scope,
andrewghoward's avatar
andrewghoward committed
87
                  'mobilenet_v1': mobilenet_v1.mobilenet_v1_arg_scope,
Pete Warden's avatar
Pete Warden committed
88
89
90
                  'mobilenet_v1_075': mobilenet_v1.mobilenet_v1_arg_scope,
                  'mobilenet_v1_050': mobilenet_v1.mobilenet_v1_arg_scope,
                  'mobilenet_v1_025': mobilenet_v1.mobilenet_v1_arg_scope,
91
92
93
                  'nasnet_cifar': nasnet.nasnet_cifar_arg_scope,
                  'nasnet_mobile': nasnet.nasnet_mobile_arg_scope,
                  'nasnet_large': nasnet.nasnet_large_arg_scope,
94
95
96
97
98
99
100
101
                 }


def get_network_fn(name, num_classes, weight_decay=0.0, is_training=False):
  """Returns a network_fn such as `logits, end_points = network_fn(images)`.

  Args:
    name: The name of the network.
102
103
    num_classes: The number of classes to use for classification. If 0 or None,
      the logits layer is omitted and its input features are returned instead.
104
105
106
107
108
109
110
    weight_decay: The l2 coefficient for the model weights.
    is_training: `True` if the model is being used for training and `False`
      otherwise.

  Returns:
    network_fn: A function that applies the model to a batch of images. It has
      the following signature:
111
112
113
114
115
116
117
118
119
120
121
122
123
124
          net, end_points = network_fn(images)
      The `images` input is a tensor of shape [batch_size, height, width, 3]
      with height = width = network_fn.default_image_size. (The permissibility
      and treatment of other sizes depends on the network_fn.)
      The returned `end_points` are a dictionary of intermediate activations.
      The returned `net` is the topmost layer, depending on `num_classes`:
      If `num_classes` was a non-zero integer, `net` is a logits tensor
      of shape [batch_size, num_classes].
      If `num_classes` was 0 or `None`, `net` is a tensor with the input
      to the logits layer of shape [batch_size, 1, 1, num_features] or
      [batch_size, num_features]. Dropout has not been applied to this
      (even if the network's original classification does); it remains for
      the caller to do this or not.

125
126
127
128
129
130
131
  Raises:
    ValueError: If network `name` is not recognized.
  """
  if name not in networks_map:
    raise ValueError('Name of network unknown %s' % name)
  func = networks_map[name]
  @functools.wraps(func)
132
  def network_fn(images, **kwargs):
133
    arg_scope = arg_scopes_map[name](weight_decay=weight_decay)
134
    with slim.arg_scope(arg_scope):
135
      return func(images, num_classes, is_training=is_training, **kwargs)
136
137
138
139
  if hasattr(func, 'default_image_size'):
    network_fn.default_image_size = func.default_image_size

  return network_fn