resnet_ctl_imagenet_benchmark.py 17.7 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Executes CTL benchmarks and accuracy tests."""
Hongkun Yu's avatar
Hongkun Yu committed
16
# pylint: disable=line-too-long,g-bad-import-order
17
18
from __future__ import print_function

Jin Young Sohn's avatar
Jin Young Sohn committed
19
import os  # pylint: disable=unused-import
20
21
22
23
24
import time

from absl import flags
import tensorflow as tf

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
25
from official.benchmark import owner_utils
26
27
from official.vision.image_classification.resnet import common
from official.vision.image_classification.resnet import resnet_ctl_imagenet_main
28
from official.benchmark.perfzero_benchmark import PerfZeroBenchmark
29
from official.benchmark import benchmark_wrappers
30
from official.utils.flags import core as flags_core
31
32
33
34
35
36
37
38
39
40

MIN_TOP_1_ACCURACY = 0.76
MAX_TOP_1_ACCURACY = 0.77

FLAGS = flags.FLAGS


class CtlBenchmark(PerfZeroBenchmark):
  """Base benchmark class with methods to simplify testing."""

Allen Wang's avatar
Allen Wang committed
41
42
43
44
45
  def __init__(self,
               output_dir=None,
               default_flags=None,
               flag_methods=None,
               **kwargs):
46
47
48
    self.default_flags = default_flags or {}
    self.flag_methods = flag_methods or {}
    super(CtlBenchmark, self).__init__(
Zongwei Zhou's avatar
Zongwei Zhou committed
49
        output_dir=output_dir,
50
        default_flags=self.default_flags,
Allen Wang's avatar
Allen Wang committed
51
52
        flag_methods=self.flag_methods,
        **kwargs)
53
54
55
56
57
58
59
60

  def _report_benchmark(self,
                        stats,
                        wall_time_sec,
                        top_1_max=None,
                        top_1_min=None,
                        total_batch_size=None,
                        log_steps=None,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
61
62
                        warmup=1,
                        start_time_sec=None):
63
64
65
66
67
68
69
70
71
72
    """Report benchmark results by writing to local protobuf file.

    Args:
      stats: dict returned from keras models with known entries.
      wall_time_sec: the during of the benchmark execution in seconds
      top_1_max: highest passing level for top_1 accuracy.
      top_1_min: lowest passing level for top_1 accuracy.
      total_batch_size: Global batch-size.
      log_steps: How often the log was created for stats['step_timestamp_log'].
      warmup: number of entries in stats['step_timestamp_log'] to ignore.
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
73
      start_time_sec: the start time of the program in seconds since epoch.
74
75
76
77
    """

    metrics = []
    if 'eval_acc' in stats:
78
79
80
81
82
83
84
85
86
87
88
89
90
      metrics.append({
          'name': 'accuracy_top_1',
          'value': stats['eval_acc'],
          'min_value': top_1_min,
          'max_value': top_1_max
      })
      metrics.append({'name': 'eval_loss', 'value': stats['eval_loss']})

      metrics.append({
          'name': 'top_1_train_accuracy',
          'value': stats['train_acc']
      })
      metrics.append({'name': 'train_loss', 'value': stats['train_loss']})
91
92

    if (warmup and 'step_timestamp_log' in stats and
Ruoxin Sang's avatar
Ruoxin Sang committed
93
94
        len(stats['step_timestamp_log']) > warmup + 1):
      # first entry in the time_log is start of step 0. The rest of the
95
96
      # entries are the end of each step recorded
      time_log = stats['step_timestamp_log']
Will Cromar's avatar
Will Cromar committed
97
98
99
      steps_elapsed = time_log[-1].batch_index - time_log[warmup].batch_index
      time_elapsed = time_log[-1].timestamp - time_log[warmup].timestamp
      examples_per_sec = total_batch_size * (steps_elapsed / time_elapsed)
100
      metrics.append({'name': 'exp_per_second', 'value': examples_per_sec})
101
102

    if 'avg_exp_per_second' in stats:
103
104
105
106
      metrics.append({
          'name': 'avg_exp_per_second',
          'value': stats['avg_exp_per_second']
      })
107

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
108
109
110
111
112
113
    if start_time_sec and 'step_timestamp_log' in stats:
      time_log = stats['step_timestamp_log']
      # time_log[0] is recorded at the beginning of the first step.
      startup_time = time_log[0].timestamp - start_time_sec
      metrics.append({'name': 'startup_time', 'value': startup_time})

114
    flags_str = flags_core.get_nondefault_flags_as_str()
115
116
117
118
119
    self.report_benchmark(
        iters=-1,
        wall_time=wall_time_sec,
        metrics=metrics,
        extras={'flags': flags_str})
120
121
122
123
124
125
126
127
128
129
130
131


class Resnet50CtlAccuracy(CtlBenchmark):
  """Benchmark accuracy tests for ResNet50 in CTL."""

  def __init__(self, output_dir=None, root_data_dir=None, **kwargs):
    """A benchmark class.

    Args:
      output_dir: directory where to output e.g. log files
      root_data_dir: directory under which to look for dataset
      **kwargs: arbitrary named arguments. This is needed to make the
132
133
        constructor forward compatible in case PerfZero provides more named
        arguments before updating the constructor.
134
135
    """

Hongkun Yu's avatar
Hongkun Yu committed
136
    flag_methods = [common.define_keras_flags]
137

138
    self.data_dir = os.path.join(root_data_dir, 'imagenet')
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
    super(Resnet50CtlAccuracy, self).__init__(
        output_dir=output_dir, flag_methods=flag_methods)

  def benchmark_8_gpu(self):
    """Test Keras model with eager, dist_strat and 8 GPUs."""
    self._setup()
    FLAGS.num_gpus = 8
    FLAGS.data_dir = self.data_dir
    FLAGS.batch_size = 128 * 8
    FLAGS.train_epochs = 90
    FLAGS.epochs_between_evals = 10
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu')
    FLAGS.dtype = 'fp32'
    self._run_and_report_benchmark()

154
155
156
157
158
159
160
161
162
163
164
165
  def benchmark_8_gpu_fp16(self):
    """Test Keras model with eager, 8 GPUs with tf.keras mixed precision."""
    self._setup()
    FLAGS.num_gpus = 8
    FLAGS.data_dir = self.data_dir
    FLAGS.batch_size = 256 * 8
    FLAGS.train_epochs = 90
    FLAGS.epochs_between_evals = 10
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_fp16')
    FLAGS.dtype = 'fp16'
    self._run_and_report_benchmark()

166
  def benchmark_8_gpu_amp(self):
167
    """Test Keras model with 8 GPUs and mixed precision via graph rewrite."""
168
169
170
    self._setup()
    FLAGS.num_gpus = 8
    FLAGS.data_dir = self.data_dir
171
    FLAGS.batch_size = 256 * 8
172
173
174
175
176
177
178
    FLAGS.train_epochs = 90
    FLAGS.epochs_between_evals = 10
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_amp')
    FLAGS.dtype = 'fp16'
    FLAGS.fp16_implementation = 'graph_rewrite'
    self._run_and_report_benchmark()

179
  @benchmark_wrappers.enable_runtime_flags
180
181
  def _run_and_report_benchmark(self):
    start_time_sec = time.time()
Hongkun Yu's avatar
Hongkun Yu committed
182
    stats = resnet_ctl_imagenet_main.run(flags.FLAGS)
183
184
185
186
187
188
189
190
    wall_time_sec = time.time() - start_time_sec

    super(Resnet50CtlAccuracy, self)._report_benchmark(
        stats,
        wall_time_sec,
        top_1_min=MIN_TOP_1_ACCURACY,
        top_1_max=MAX_TOP_1_ACCURACY,
        total_batch_size=FLAGS.batch_size,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
191
192
        log_steps=100,
        start_time_sec=start_time_sec)
193
194
195
196
197


class Resnet50CtlBenchmarkBase(CtlBenchmark):
  """Resnet50 benchmarks."""

Allen Wang's avatar
Allen Wang committed
198
  def __init__(self, output_dir=None, default_flags=None, **kwargs):
Hongkun Yu's avatar
Hongkun Yu committed
199
    flag_methods = [common.define_keras_flags]
200
201
202
203

    super(Resnet50CtlBenchmarkBase, self).__init__(
        output_dir=output_dir,
        flag_methods=flag_methods,
Allen Wang's avatar
Allen Wang committed
204
205
        default_flags=default_flags,
        **kwargs)
206

207
  @benchmark_wrappers.enable_runtime_flags
208
209
  def _run_and_report_benchmark(self):
    start_time_sec = time.time()
Hongkun Yu's avatar
Hongkun Yu committed
210
    stats = resnet_ctl_imagenet_main.run(FLAGS)
211
212
    wall_time_sec = time.time() - start_time_sec

Zongwei Zhou's avatar
Zongwei Zhou committed
213
214
    # Warmup means the number of logged step time entries that are excluded in
    # performance report. Default to exclude 1 FLAGS.log_steps time.
215
216
217
218
219
    super(Resnet50CtlBenchmarkBase, self)._report_benchmark(
        stats,
        wall_time_sec,
        total_batch_size=FLAGS.batch_size,
        log_steps=FLAGS.log_steps,
Zongwei Zhou's avatar
Zongwei Zhou committed
220
        warmup=1,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
221
        start_time_sec=start_time_sec)
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237

  def benchmark_1_gpu_no_dist_strat(self):
    """Test Keras model with 1 GPU, no distribution strategy."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.distribution_strategy = 'off'
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_no_dist_strat')
    FLAGS.batch_size = 128
    self._run_and_report_benchmark()

  def benchmark_1_gpu(self):
    """Test Keras model with 1 GPU."""
    self._setup()

    FLAGS.num_gpus = 1
238
    FLAGS.distribution_strategy = 'one_device'
239
240
241
242
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu')
    FLAGS.batch_size = 128
    self._run_and_report_benchmark()

243
244
245
246
247
248
249
250
251
252
253
  def benchmark_1_gpu_fp16(self):
    """Test Keras model with 1 GPU with tf.keras mixed precision."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.distribution_strategy = 'one_device'
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_fp16')
    FLAGS.batch_size = 256
    FLAGS.dtype = 'fp16'
    self._run_and_report_benchmark()

254
255
256
257
258
  def benchmark_1_gpu_amp(self):
    """Test Keras model with 1 GPU with automatic mixed precision."""
    self._setup()

    FLAGS.num_gpus = 1
259
    FLAGS.distribution_strategy = 'one_device'
260
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_amp')
261
    FLAGS.batch_size = 256
262
263
264
265
266
267
268
269
270
    FLAGS.dtype = 'fp16'
    FLAGS.fp16_implementation = 'graph_rewrite'
    self._run_and_report_benchmark()

  def benchmark_xla_1_gpu_amp(self):
    """Test Keras model with XLA and 1 GPU with automatic mixed precision."""
    self._setup()

    FLAGS.num_gpus = 1
271
    FLAGS.distribution_strategy = 'one_device'
272
    FLAGS.model_dir = self._get_model_dir('benchmark_xla_1_gpu_amp')
273
    FLAGS.batch_size = 256
274
275
276
277
278
    FLAGS.dtype = 'fp16'
    FLAGS.fp16_implementation = 'graph_rewrite'
    FLAGS.enable_xla = True
    self._run_and_report_benchmark()

279
280
281
282
283
  def benchmark_1_gpu_eager(self):
    """Test Keras model with 1 GPU in pure eager mode."""
    self._setup()

    FLAGS.num_gpus = 1
284
    FLAGS.distribution_strategy = 'one_device'
285
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_eager')
286
    FLAGS.batch_size = 120
287
    FLAGS.use_tf_function = False
288
    FLAGS.use_tf_while_loop = False
289
    FLAGS.single_l2_loss_op = True
290
291
    self._run_and_report_benchmark()

292
293
294
295
296
297
298
  def benchmark_1_gpu_fp16_eager(self):
    """Test Keras model with 1 GPU with fp16 and pure eager mode."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.distribution_strategy = 'one_device'
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_fp16_eager')
299
    FLAGS.batch_size = 232
300
301
    FLAGS.dtype = 'fp16'
    FLAGS.use_tf_function = False
302
    FLAGS.use_tf_while_loop = False
303
304
305
    FLAGS.single_l2_loss_op = True
    self._run_and_report_benchmark()

306
307
308
309
310
  def benchmark_8_gpu(self):
    """Test Keras model with 8 GPUs."""
    self._setup()

    FLAGS.num_gpus = 8
311
    FLAGS.distribution_strategy = 'mirrored'
312
313
314
315
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu')
    FLAGS.batch_size = 128 * 8  # 8 GPUs
    self._run_and_report_benchmark()

Pankaj Kanwar's avatar
Pankaj Kanwar committed
316
317
318
319
320
321
322
323
324
325
  def benchmark_8_gpu_fp32_no_tf32(self):
    """Test Keras model with 8 GPUs.Runs in FP32 by disabling TF32 execution."""
    self._setup()
    tf.config.experimental.enable_tensor_float_32_execution(False)
    FLAGS.num_gpus = 8
    FLAGS.distribution_strategy = 'mirrored'
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_fp32_no_tf32')
    FLAGS.batch_size = 128 * 8  # 8 GPUs
    self._run_and_report_benchmark()

326
327
328
329
330
331
332
333
334
335
336
  def benchmark_8_gpu_fp16(self):
    """Test Keras model with 8 GPUs with tf.keras mixed precision."""
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.distribution_strategy = 'mirrored'
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_fp16')
    FLAGS.batch_size = 256 * 8  # 8 GPUs
    FLAGS.dtype = 'fp16'
    self._run_and_report_benchmark()

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
337
338
339
340
341
342
343
344
345
346
347
348
  def benchmark_xla_8_gpu_fp16(self):
    """Test Keras model with 8 GPUs with tf.keras mixed precision."""
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.distribution_strategy = 'mirrored'
    FLAGS.model_dir = self._get_model_dir('benchmark_xla_8_gpu_fp16')
    FLAGS.batch_size = 256 * 8  # 8 GPUs
    FLAGS.dtype = 'fp16'
    FLAGS.enable_xla = True
    self._run_and_report_benchmark()

Sai Ganesh Bandiatmakuri's avatar
Sai Ganesh Bandiatmakuri committed
349
350
351
352
353
354
  def benchmark_8_gpu_eager(self):
    """Test Keras model with 8 GPUs, eager, fp32."""
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.use_tf_function = False
355
    FLAGS.use_tf_while_loop = False
Sai Ganesh Bandiatmakuri's avatar
Sai Ganesh Bandiatmakuri committed
356
357
358
359
360
361
362
363
364
365
366
367
    FLAGS.distribution_strategy = 'mirrored'
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_eager')
    FLAGS.batch_size = 128
    self._run_and_report_benchmark()

  def benchmark_8_gpu_eager_fp16(self):
    """Test Keras model with 8 GPUs, eager, fp16."""
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.dtype = 'fp16'
    FLAGS.use_tf_function = False
368
    FLAGS.use_tf_while_loop = False
Sai Ganesh Bandiatmakuri's avatar
Sai Ganesh Bandiatmakuri committed
369
370
371
372
373
    FLAGS.distribution_strategy = 'mirrored'
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_eager_fp16')
    FLAGS.batch_size = 128
    self._run_and_report_benchmark()

374
375
376
377
378
  def benchmark_8_gpu_amp(self):
    """Test Keras model with 8 GPUs with automatic mixed precision."""
    self._setup()

    FLAGS.num_gpus = 8
379
    FLAGS.distribution_strategy = 'mirrored'
380
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_amp')
381
    FLAGS.batch_size = 256 * 8  # 8 GPUs
382
383
384
385
386
387
388
389
390
    FLAGS.dtype = 'fp16'
    FLAGS.fp16_implementation = 'graph_rewrite'
    self._run_and_report_benchmark()

  def benchmark_xla_8_gpu_amp(self):
    """Test Keras model with XLA and 8 GPUs with automatic mixed precision."""
    self._setup()

    FLAGS.num_gpus = 8
391
    FLAGS.distribution_strategy = 'mirrored'
392
    FLAGS.model_dir = self._get_model_dir('benchmark_xla_8_gpu_amp')
393
    FLAGS.batch_size = 256 * 8  # 8 GPUs
394
395
396
397
398
    FLAGS.dtype = 'fp16'
    FLAGS.fp16_implementation = 'graph_rewrite'
    FLAGS.enable_xla = True
    self._run_and_report_benchmark()

Zongwei Zhou's avatar
Zongwei Zhou committed
399
400
401
402
403
404
405
406
407
408
409
410
411
  def _set_df_common(self):
    FLAGS.steps_per_loop = 500
    FLAGS.train_epochs = 2
    FLAGS.train_steps = None
    FLAGS.skip_eval = True
    FLAGS.enable_eager = True
    FLAGS.enable_tensorboard = False
    FLAGS.distribution_strategy = 'tpu'
    FLAGS.report_accuracy_metrics = False
    FLAGS.log_steps = 50
    FLAGS.single_l2_loss_op = True
    FLAGS.use_tf_function = True
    FLAGS.enable_checkpoint_and_export = False
Allen Wang's avatar
Allen Wang committed
412
    FLAGS.data_dir = 'gs://mlcompass-data/imagenet/imagenet-2012-tfrecord'
Zongwei Zhou's avatar
Zongwei Zhou committed
413
414
415
416
417
418

  def benchmark_2x2_tpu_bf16(self):
    self._setup()
    self._set_df_common()
    FLAGS.batch_size = 1024
    FLAGS.dtype = 'bf16'
Allen Wang's avatar
Allen Wang committed
419
    FLAGS.model_dir = self._get_model_dir('benchmark_2x2_tpu_bf16')
Zongwei Zhou's avatar
Zongwei Zhou committed
420
421
    self._run_and_report_benchmark()

422
423
424
425
426
427
428
  @owner_utils.Owner('tf-graph-compiler')
  def benchmark_2x2_tpu_bf16_mlir(self):
    self._setup()
    self._set_df_common()
    FLAGS.batch_size = 1024
    FLAGS.dtype = 'bf16'
    tf.config.experimental.enable_mlir_bridge()
Allen Wang's avatar
Allen Wang committed
429
    FLAGS.model_dir = self._get_model_dir('benchmark_2x2_tpu_bf16_mlir')
430
431
    self._run_and_report_benchmark()

Zongwei Zhou's avatar
Zongwei Zhou committed
432
433
434
435
436
  def benchmark_4x4_tpu_bf16(self):
    self._setup()
    self._set_df_common()
    FLAGS.batch_size = 4096
    FLAGS.dtype = 'bf16'
Allen Wang's avatar
Allen Wang committed
437
    FLAGS.model_dir = self._get_model_dir('benchmark_4x4_tpu_bf16')
Zongwei Zhou's avatar
Zongwei Zhou committed
438
439
    self._run_and_report_benchmark()

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
440
441
442
443
444
445
446
  @owner_utils.Owner('tf-graph-compiler')
  def benchmark_4x4_tpu_bf16_mlir(self):
    """Run resnet model on 4x4 with the MLIR Bridge enabled."""
    self._setup()
    self._set_df_common()
    FLAGS.batch_size = 4096
    FLAGS.dtype = 'bf16'
Allen Wang's avatar
Allen Wang committed
447
    FLAGS.model_dir = self._get_model_dir('benchmark_4x4_tpu_bf16_mlir')
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
448
449
450
    tf.config.experimental.enable_mlir_bridge()
    self._run_and_report_benchmark()

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
  def benchmark_8x8_tpu_bf16(self):
    self._setup()
    self._set_df_common()
    FLAGS.batch_size = 8192
    FLAGS.dtype = 'bf16'
    FLAGS.model_dir = self._get_model_dir('benchmark_8x8_tpu_bf16')
    self._run_and_report_benchmark()

  @owner_utils.Owner('tf-graph-compiler')
  def benchmark_8x8_tpu_bf16_mlir(self):
    self._setup()
    self._set_df_common()
    FLAGS.batch_size = 8192
    FLAGS.dtype = 'bf16'
    FLAGS.model_dir = self._get_model_dir('benchmark_8x8_tpu_bf16_mlir')
    tf.config.experimental.enable_mlir_bridge()
    self._run_and_report_benchmark()

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
  def benchmark_8x8_tpu(self):
    self._setup()
    self._set_df_common()
    FLAGS.batch_size = 8192
    FLAGS.model_dir = self._get_model_dir('benchmark_8x8_tpu')
    self._run_and_report_benchmark()

  @owner_utils.Owner('tf-graph-compiler')
  def benchmark_8x8_tpu_mlir(self):
    self._setup()
    self._set_df_common()
    FLAGS.batch_size = 8192
    FLAGS.model_dir = self._get_model_dir('benchmark_8x8_tpu_mlir')
    tf.config.experimental.enable_mlir_bridge()
    self._run_and_report_benchmark()

Zongwei Zhou's avatar
Zongwei Zhou committed
485
486
487
488
489
  def benchmark_8x16_tpu_bf16(self):
    self._setup()
    self._set_df_common()
    FLAGS.batch_size = 8192
    FLAGS.dtype = 'bf16'
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
490
    FLAGS.model_dir = self._get_model_dir('benchmark_8x16_tpu_bf16')
Zongwei Zhou's avatar
Zongwei Zhou committed
491
492
    self._run_and_report_benchmark()

493
494
  def fill_report_object(self, stats):
    super(Resnet50CtlBenchmarkBase, self).fill_report_object(
495
        stats, total_batch_size=FLAGS.batch_size, log_steps=FLAGS.log_steps)
496
497
498
499
500
501
502
503
504
505


class Resnet50CtlBenchmarkSynth(Resnet50CtlBenchmarkBase):
  """Resnet50 synthetic benchmark tests."""

  def __init__(self, output_dir=None, root_data_dir=None, **kwargs):
    def_flags = {}
    def_flags['skip_eval'] = True
    def_flags['use_synthetic_data'] = True
    def_flags['train_steps'] = 110
Hongkun Yu's avatar
Hongkun Yu committed
506
    def_flags['steps_per_loop'] = 10
507
508
509
    def_flags['log_steps'] = 10

    super(Resnet50CtlBenchmarkSynth, self).__init__(
Allen Wang's avatar
Allen Wang committed
510
        output_dir=output_dir, default_flags=def_flags, **kwargs)
511
512
513
514
515
516
517
518


class Resnet50CtlBenchmarkReal(Resnet50CtlBenchmarkBase):
  """Resnet50 real data benchmark tests."""

  def __init__(self, output_dir=None, root_data_dir=None, **kwargs):
    def_flags = {}
    def_flags['skip_eval'] = True
Hongkun Yu's avatar
Hongkun Yu committed
519
520
    def_flags[
        'data_dir'] = os.path.join(root_data_dir, 'imagenet')
521
    def_flags['train_steps'] = 110
Hongkun Yu's avatar
Hongkun Yu committed
522
    def_flags['steps_per_loop'] = 10
523
524
525
    def_flags['log_steps'] = 10

    super(Resnet50CtlBenchmarkReal, self).__init__(
Allen Wang's avatar
Allen Wang committed
526
        output_dir=output_dir, default_flags=def_flags, **kwargs)
527

528

529
530
if __name__ == '__main__':
  tf.test.main()