resnet_ctl_imagenet_benchmark.py 16.7 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Executes CTL benchmarks and accuracy tests."""
Hongkun Yu's avatar
Hongkun Yu committed
16
# pylint: disable=line-too-long,g-bad-import-order
17
18
19
20
21
22
23
from __future__ import print_function

import time

from absl import flags
import tensorflow as tf

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
24
from official.benchmark import owner_utils
25
26
from official.vision.image_classification.resnet import common
from official.vision.image_classification.resnet import resnet_ctl_imagenet_main
27
from official.benchmark.perfzero_benchmark import PerfZeroBenchmark
28
from official.benchmark import benchmark_wrappers
29
from official.utils.flags import core as flags_core
30
31
32
33
34
35
36
37
38
39

MIN_TOP_1_ACCURACY = 0.76
MAX_TOP_1_ACCURACY = 0.77

FLAGS = flags.FLAGS


class CtlBenchmark(PerfZeroBenchmark):
  """Base benchmark class with methods to simplify testing."""

Allen Wang's avatar
Allen Wang committed
40
41
42
43
44
  def __init__(self,
               output_dir=None,
               default_flags=None,
               flag_methods=None,
               **kwargs):
45
46
47
    self.default_flags = default_flags or {}
    self.flag_methods = flag_methods or {}
    super(CtlBenchmark, self).__init__(
Zongwei Zhou's avatar
Zongwei Zhou committed
48
        output_dir=output_dir,
49
        default_flags=self.default_flags,
Allen Wang's avatar
Allen Wang committed
50
51
        flag_methods=self.flag_methods,
        **kwargs)
52
53
54
55
56
57
58
59

  def _report_benchmark(self,
                        stats,
                        wall_time_sec,
                        top_1_max=None,
                        top_1_min=None,
                        total_batch_size=None,
                        log_steps=None,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
60
61
                        warmup=1,
                        start_time_sec=None):
62
63
64
65
66
67
68
69
70
71
    """Report benchmark results by writing to local protobuf file.

    Args:
      stats: dict returned from keras models with known entries.
      wall_time_sec: the during of the benchmark execution in seconds
      top_1_max: highest passing level for top_1 accuracy.
      top_1_min: lowest passing level for top_1 accuracy.
      total_batch_size: Global batch-size.
      log_steps: How often the log was created for stats['step_timestamp_log'].
      warmup: number of entries in stats['step_timestamp_log'] to ignore.
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
72
      start_time_sec: the start time of the program in seconds since epoch.
73
74
75
76
    """

    metrics = []
    if 'eval_acc' in stats:
77
78
79
80
81
82
83
84
85
86
87
88
89
      metrics.append({
          'name': 'accuracy_top_1',
          'value': stats['eval_acc'],
          'min_value': top_1_min,
          'max_value': top_1_max
      })
      metrics.append({'name': 'eval_loss', 'value': stats['eval_loss']})

      metrics.append({
          'name': 'top_1_train_accuracy',
          'value': stats['train_acc']
      })
      metrics.append({'name': 'train_loss', 'value': stats['train_loss']})
90
91

    if (warmup and 'step_timestamp_log' in stats and
Ruoxin Sang's avatar
Ruoxin Sang committed
92
93
        len(stats['step_timestamp_log']) > warmup + 1):
      # first entry in the time_log is start of step 0. The rest of the
94
95
      # entries are the end of each step recorded
      time_log = stats['step_timestamp_log']
Will Cromar's avatar
Will Cromar committed
96
97
98
      steps_elapsed = time_log[-1].batch_index - time_log[warmup].batch_index
      time_elapsed = time_log[-1].timestamp - time_log[warmup].timestamp
      examples_per_sec = total_batch_size * (steps_elapsed / time_elapsed)
99
      metrics.append({'name': 'exp_per_second', 'value': examples_per_sec})
100
101

    if 'avg_exp_per_second' in stats:
102
103
104
105
      metrics.append({
          'name': 'avg_exp_per_second',
          'value': stats['avg_exp_per_second']
      })
106

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
107
108
109
110
111
112
    if start_time_sec and 'step_timestamp_log' in stats:
      time_log = stats['step_timestamp_log']
      # time_log[0] is recorded at the beginning of the first step.
      startup_time = time_log[0].timestamp - start_time_sec
      metrics.append({'name': 'startup_time', 'value': startup_time})

113
    flags_str = flags_core.get_nondefault_flags_as_str()
114
115
116
117
118
    self.report_benchmark(
        iters=-1,
        wall_time=wall_time_sec,
        metrics=metrics,
        extras={'flags': flags_str})
119
120
121
122
123
124
125
126
127
128
129
130


class Resnet50CtlAccuracy(CtlBenchmark):
  """Benchmark accuracy tests for ResNet50 in CTL."""

  def __init__(self, output_dir=None, root_data_dir=None, **kwargs):
    """A benchmark class.

    Args:
      output_dir: directory where to output e.g. log files
      root_data_dir: directory under which to look for dataset
      **kwargs: arbitrary named arguments. This is needed to make the
131
132
        constructor forward compatible in case PerfZero provides more named
        arguments before updating the constructor.
133
134
    """

Hongkun Yu's avatar
Hongkun Yu committed
135
    flag_methods = [common.define_keras_flags]
136

137
    self.data_dir = os.path.join(root_data_dir, 'imagenet')
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
    super(Resnet50CtlAccuracy, self).__init__(
        output_dir=output_dir, flag_methods=flag_methods)

  def benchmark_8_gpu(self):
    """Test Keras model with eager, dist_strat and 8 GPUs."""
    self._setup()
    FLAGS.num_gpus = 8
    FLAGS.data_dir = self.data_dir
    FLAGS.batch_size = 128 * 8
    FLAGS.train_epochs = 90
    FLAGS.epochs_between_evals = 10
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu')
    FLAGS.dtype = 'fp32'
    self._run_and_report_benchmark()

153
154
155
156
157
158
159
160
161
162
163
164
  def benchmark_8_gpu_fp16(self):
    """Test Keras model with eager, 8 GPUs with tf.keras mixed precision."""
    self._setup()
    FLAGS.num_gpus = 8
    FLAGS.data_dir = self.data_dir
    FLAGS.batch_size = 256 * 8
    FLAGS.train_epochs = 90
    FLAGS.epochs_between_evals = 10
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_fp16')
    FLAGS.dtype = 'fp16'
    self._run_and_report_benchmark()

165
  def benchmark_8_gpu_amp(self):
166
    """Test Keras model with 8 GPUs and mixed precision via graph rewrite."""
167
168
169
    self._setup()
    FLAGS.num_gpus = 8
    FLAGS.data_dir = self.data_dir
170
    FLAGS.batch_size = 256 * 8
171
172
173
174
175
176
177
    FLAGS.train_epochs = 90
    FLAGS.epochs_between_evals = 10
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_amp')
    FLAGS.dtype = 'fp16'
    FLAGS.fp16_implementation = 'graph_rewrite'
    self._run_and_report_benchmark()

178
  @benchmark_wrappers.enable_runtime_flags
179
180
  def _run_and_report_benchmark(self):
    start_time_sec = time.time()
Hongkun Yu's avatar
Hongkun Yu committed
181
    stats = resnet_ctl_imagenet_main.run(flags.FLAGS)
182
183
184
185
186
187
188
189
    wall_time_sec = time.time() - start_time_sec

    super(Resnet50CtlAccuracy, self)._report_benchmark(
        stats,
        wall_time_sec,
        top_1_min=MIN_TOP_1_ACCURACY,
        top_1_max=MAX_TOP_1_ACCURACY,
        total_batch_size=FLAGS.batch_size,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
190
191
        log_steps=100,
        start_time_sec=start_time_sec)
192
193
194
195
196


class Resnet50CtlBenchmarkBase(CtlBenchmark):
  """Resnet50 benchmarks."""

Allen Wang's avatar
Allen Wang committed
197
  def __init__(self, output_dir=None, default_flags=None, **kwargs):
Hongkun Yu's avatar
Hongkun Yu committed
198
    flag_methods = [common.define_keras_flags]
199
200
201
202

    super(Resnet50CtlBenchmarkBase, self).__init__(
        output_dir=output_dir,
        flag_methods=flag_methods,
Allen Wang's avatar
Allen Wang committed
203
204
        default_flags=default_flags,
        **kwargs)
205

206
  @benchmark_wrappers.enable_runtime_flags
207
208
  def _run_and_report_benchmark(self):
    start_time_sec = time.time()
Hongkun Yu's avatar
Hongkun Yu committed
209
    stats = resnet_ctl_imagenet_main.run(FLAGS)
210
211
    wall_time_sec = time.time() - start_time_sec

Zongwei Zhou's avatar
Zongwei Zhou committed
212
213
    # Warmup means the number of logged step time entries that are excluded in
    # performance report. Default to exclude 1 FLAGS.log_steps time.
214
215
216
217
218
    super(Resnet50CtlBenchmarkBase, self)._report_benchmark(
        stats,
        wall_time_sec,
        total_batch_size=FLAGS.batch_size,
        log_steps=FLAGS.log_steps,
Zongwei Zhou's avatar
Zongwei Zhou committed
219
        warmup=1,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
220
        start_time_sec=start_time_sec)
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236

  def benchmark_1_gpu_no_dist_strat(self):
    """Test Keras model with 1 GPU, no distribution strategy."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.distribution_strategy = 'off'
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_no_dist_strat')
    FLAGS.batch_size = 128
    self._run_and_report_benchmark()

  def benchmark_1_gpu(self):
    """Test Keras model with 1 GPU."""
    self._setup()

    FLAGS.num_gpus = 1
237
    FLAGS.distribution_strategy = 'one_device'
238
239
240
241
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu')
    FLAGS.batch_size = 128
    self._run_and_report_benchmark()

242
243
244
245
246
247
248
249
250
251
252
  def benchmark_1_gpu_fp16(self):
    """Test Keras model with 1 GPU with tf.keras mixed precision."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.distribution_strategy = 'one_device'
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_fp16')
    FLAGS.batch_size = 256
    FLAGS.dtype = 'fp16'
    self._run_and_report_benchmark()

253
254
255
256
257
  def benchmark_1_gpu_amp(self):
    """Test Keras model with 1 GPU with automatic mixed precision."""
    self._setup()

    FLAGS.num_gpus = 1
258
    FLAGS.distribution_strategy = 'one_device'
259
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_amp')
260
    FLAGS.batch_size = 256
261
262
263
264
265
266
267
268
269
    FLAGS.dtype = 'fp16'
    FLAGS.fp16_implementation = 'graph_rewrite'
    self._run_and_report_benchmark()

  def benchmark_xla_1_gpu_amp(self):
    """Test Keras model with XLA and 1 GPU with automatic mixed precision."""
    self._setup()

    FLAGS.num_gpus = 1
270
    FLAGS.distribution_strategy = 'one_device'
271
    FLAGS.model_dir = self._get_model_dir('benchmark_xla_1_gpu_amp')
272
    FLAGS.batch_size = 256
273
274
275
276
277
    FLAGS.dtype = 'fp16'
    FLAGS.fp16_implementation = 'graph_rewrite'
    FLAGS.enable_xla = True
    self._run_and_report_benchmark()

278
279
280
281
282
  def benchmark_1_gpu_eager(self):
    """Test Keras model with 1 GPU in pure eager mode."""
    self._setup()

    FLAGS.num_gpus = 1
283
    FLAGS.distribution_strategy = 'one_device'
284
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_eager')
285
    FLAGS.batch_size = 120
286
    FLAGS.use_tf_function = False
287
    FLAGS.use_tf_while_loop = False
288
    FLAGS.single_l2_loss_op = True
289
290
    self._run_and_report_benchmark()

291
292
293
294
295
296
297
  def benchmark_1_gpu_fp16_eager(self):
    """Test Keras model with 1 GPU with fp16 and pure eager mode."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.distribution_strategy = 'one_device'
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_fp16_eager')
298
    FLAGS.batch_size = 232
299
300
    FLAGS.dtype = 'fp16'
    FLAGS.use_tf_function = False
301
    FLAGS.use_tf_while_loop = False
302
303
304
    FLAGS.single_l2_loss_op = True
    self._run_and_report_benchmark()

305
306
307
308
309
  def benchmark_8_gpu(self):
    """Test Keras model with 8 GPUs."""
    self._setup()

    FLAGS.num_gpus = 8
310
    FLAGS.distribution_strategy = 'mirrored'
311
312
313
314
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu')
    FLAGS.batch_size = 128 * 8  # 8 GPUs
    self._run_and_report_benchmark()

Pankaj Kanwar's avatar
Pankaj Kanwar committed
315
316
317
318
319
320
321
322
323
324
  def benchmark_8_gpu_fp32_no_tf32(self):
    """Test Keras model with 8 GPUs.Runs in FP32 by disabling TF32 execution."""
    self._setup()
    tf.config.experimental.enable_tensor_float_32_execution(False)
    FLAGS.num_gpus = 8
    FLAGS.distribution_strategy = 'mirrored'
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_fp32_no_tf32')
    FLAGS.batch_size = 128 * 8  # 8 GPUs
    self._run_and_report_benchmark()

325
326
327
328
329
330
331
332
333
334
335
  def benchmark_8_gpu_fp16(self):
    """Test Keras model with 8 GPUs with tf.keras mixed precision."""
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.distribution_strategy = 'mirrored'
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_fp16')
    FLAGS.batch_size = 256 * 8  # 8 GPUs
    FLAGS.dtype = 'fp16'
    self._run_and_report_benchmark()

Sai Ganesh Bandiatmakuri's avatar
Sai Ganesh Bandiatmakuri committed
336
337
338
339
340
341
  def benchmark_8_gpu_eager(self):
    """Test Keras model with 8 GPUs, eager, fp32."""
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.use_tf_function = False
342
    FLAGS.use_tf_while_loop = False
Sai Ganesh Bandiatmakuri's avatar
Sai Ganesh Bandiatmakuri committed
343
344
345
346
347
348
349
350
351
352
353
354
    FLAGS.distribution_strategy = 'mirrored'
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_eager')
    FLAGS.batch_size = 128
    self._run_and_report_benchmark()

  def benchmark_8_gpu_eager_fp16(self):
    """Test Keras model with 8 GPUs, eager, fp16."""
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.dtype = 'fp16'
    FLAGS.use_tf_function = False
355
    FLAGS.use_tf_while_loop = False
Sai Ganesh Bandiatmakuri's avatar
Sai Ganesh Bandiatmakuri committed
356
357
358
359
360
    FLAGS.distribution_strategy = 'mirrored'
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_eager_fp16')
    FLAGS.batch_size = 128
    self._run_and_report_benchmark()

361
362
363
364
365
  def benchmark_8_gpu_amp(self):
    """Test Keras model with 8 GPUs with automatic mixed precision."""
    self._setup()

    FLAGS.num_gpus = 8
366
    FLAGS.distribution_strategy = 'mirrored'
367
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_amp')
368
    FLAGS.batch_size = 256 * 8  # 8 GPUs
369
370
371
372
373
374
375
376
377
    FLAGS.dtype = 'fp16'
    FLAGS.fp16_implementation = 'graph_rewrite'
    self._run_and_report_benchmark()

  def benchmark_xla_8_gpu_amp(self):
    """Test Keras model with XLA and 8 GPUs with automatic mixed precision."""
    self._setup()

    FLAGS.num_gpus = 8
378
    FLAGS.distribution_strategy = 'mirrored'
379
    FLAGS.model_dir = self._get_model_dir('benchmark_xla_8_gpu_amp')
380
    FLAGS.batch_size = 256 * 8  # 8 GPUs
381
382
383
384
385
    FLAGS.dtype = 'fp16'
    FLAGS.fp16_implementation = 'graph_rewrite'
    FLAGS.enable_xla = True
    self._run_and_report_benchmark()

Zongwei Zhou's avatar
Zongwei Zhou committed
386
387
388
389
390
391
392
393
394
395
396
397
398
  def _set_df_common(self):
    FLAGS.steps_per_loop = 500
    FLAGS.train_epochs = 2
    FLAGS.train_steps = None
    FLAGS.skip_eval = True
    FLAGS.enable_eager = True
    FLAGS.enable_tensorboard = False
    FLAGS.distribution_strategy = 'tpu'
    FLAGS.report_accuracy_metrics = False
    FLAGS.log_steps = 50
    FLAGS.single_l2_loss_op = True
    FLAGS.use_tf_function = True
    FLAGS.enable_checkpoint_and_export = False
Allen Wang's avatar
Allen Wang committed
399
    FLAGS.data_dir = 'gs://mlcompass-data/imagenet/imagenet-2012-tfrecord'
Zongwei Zhou's avatar
Zongwei Zhou committed
400
401
402
403
404
405

  def benchmark_2x2_tpu_bf16(self):
    self._setup()
    self._set_df_common()
    FLAGS.batch_size = 1024
    FLAGS.dtype = 'bf16'
Allen Wang's avatar
Allen Wang committed
406
    FLAGS.model_dir = self._get_model_dir('benchmark_2x2_tpu_bf16')
Zongwei Zhou's avatar
Zongwei Zhou committed
407
408
    self._run_and_report_benchmark()

409
410
411
412
413
414
415
  @owner_utils.Owner('tf-graph-compiler')
  def benchmark_2x2_tpu_bf16_mlir(self):
    self._setup()
    self._set_df_common()
    FLAGS.batch_size = 1024
    FLAGS.dtype = 'bf16'
    tf.config.experimental.enable_mlir_bridge()
Allen Wang's avatar
Allen Wang committed
416
    FLAGS.model_dir = self._get_model_dir('benchmark_2x2_tpu_bf16_mlir')
417
418
    self._run_and_report_benchmark()

Zongwei Zhou's avatar
Zongwei Zhou committed
419
420
421
422
423
  def benchmark_4x4_tpu_bf16(self):
    self._setup()
    self._set_df_common()
    FLAGS.batch_size = 4096
    FLAGS.dtype = 'bf16'
Allen Wang's avatar
Allen Wang committed
424
    FLAGS.model_dir = self._get_model_dir('benchmark_4x4_tpu_bf16')
Zongwei Zhou's avatar
Zongwei Zhou committed
425
426
    self._run_and_report_benchmark()

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
427
428
429
430
431
432
433
  @owner_utils.Owner('tf-graph-compiler')
  def benchmark_4x4_tpu_bf16_mlir(self):
    """Run resnet model on 4x4 with the MLIR Bridge enabled."""
    self._setup()
    self._set_df_common()
    FLAGS.batch_size = 4096
    FLAGS.dtype = 'bf16'
Allen Wang's avatar
Allen Wang committed
434
    FLAGS.model_dir = self._get_model_dir('benchmark_4x4_tpu_bf16_mlir')
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
435
436
437
    tf.config.experimental.enable_mlir_bridge()
    self._run_and_report_benchmark()

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
  def benchmark_8x8_tpu_bf16(self):
    self._setup()
    self._set_df_common()
    FLAGS.batch_size = 8192
    FLAGS.dtype = 'bf16'
    FLAGS.model_dir = self._get_model_dir('benchmark_8x8_tpu_bf16')
    self._run_and_report_benchmark()

  @owner_utils.Owner('tf-graph-compiler')
  def benchmark_8x8_tpu_bf16_mlir(self):
    self._setup()
    self._set_df_common()
    FLAGS.batch_size = 8192
    FLAGS.dtype = 'bf16'
    FLAGS.model_dir = self._get_model_dir('benchmark_8x8_tpu_bf16_mlir')
    tf.config.experimental.enable_mlir_bridge()
    self._run_and_report_benchmark()

Zongwei Zhou's avatar
Zongwei Zhou committed
456
457
458
459
460
461
462
  def benchmark_8x16_tpu_bf16(self):
    self._setup()
    self._set_df_common()
    FLAGS.batch_size = 8192
    FLAGS.dtype = 'bf16'
    self._run_and_report_benchmark()

463
464
  def fill_report_object(self, stats):
    super(Resnet50CtlBenchmarkBase, self).fill_report_object(
465
        stats, total_batch_size=FLAGS.batch_size, log_steps=FLAGS.log_steps)
466
467
468
469
470
471
472
473
474
475


class Resnet50CtlBenchmarkSynth(Resnet50CtlBenchmarkBase):
  """Resnet50 synthetic benchmark tests."""

  def __init__(self, output_dir=None, root_data_dir=None, **kwargs):
    def_flags = {}
    def_flags['skip_eval'] = True
    def_flags['use_synthetic_data'] = True
    def_flags['train_steps'] = 110
Hongkun Yu's avatar
Hongkun Yu committed
476
    def_flags['steps_per_loop'] = 10
477
478
479
    def_flags['log_steps'] = 10

    super(Resnet50CtlBenchmarkSynth, self).__init__(
Allen Wang's avatar
Allen Wang committed
480
        output_dir=output_dir, default_flags=def_flags, **kwargs)
481
482
483
484
485
486
487
488


class Resnet50CtlBenchmarkReal(Resnet50CtlBenchmarkBase):
  """Resnet50 real data benchmark tests."""

  def __init__(self, output_dir=None, root_data_dir=None, **kwargs):
    def_flags = {}
    def_flags['skip_eval'] = True
Hongkun Yu's avatar
Hongkun Yu committed
489
490
    def_flags[
        'data_dir'] = os.path.join(root_data_dir, 'imagenet')
491
    def_flags['train_steps'] = 110
Hongkun Yu's avatar
Hongkun Yu committed
492
    def_flags['steps_per_loop'] = 10
493
494
495
    def_flags['log_steps'] = 10

    super(Resnet50CtlBenchmarkReal, self).__init__(
Allen Wang's avatar
Allen Wang committed
496
        output_dir=output_dir, default_flags=def_flags, **kwargs)
497

498

499
500
if __name__ == '__main__':
  tf.test.main()