resnet_ctl_imagenet_benchmark.py 14.2 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
# Copyright 2019 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Executes CTL benchmarks and accuracy tests."""
from __future__ import print_function

import os
import time

# pylint: disable=g-bad-import-order
from absl import flags
import tensorflow as tf

25
26
from official.vision.image_classification.resnet import common
from official.vision.image_classification.resnet import resnet_ctl_imagenet_main
27
from official.benchmark.perfzero_benchmark import PerfZeroBenchmark
28
from official.utils.testing import benchmark_wrappers
29
from official.utils.flags import core as flags_core
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

MIN_TOP_1_ACCURACY = 0.76
MAX_TOP_1_ACCURACY = 0.77

FLAGS = flags.FLAGS


class CtlBenchmark(PerfZeroBenchmark):
  """Base benchmark class with methods to simplify testing."""

  def __init__(self, output_dir=None, default_flags=None, flag_methods=None):
    self.output_dir = output_dir
    self.default_flags = default_flags or {}
    self.flag_methods = flag_methods or {}
    super(CtlBenchmark, self).__init__(
        output_dir=self.output_dir,
        default_flags=self.default_flags,
        flag_methods=self.flag_methods)

  def _report_benchmark(self,
                        stats,
                        wall_time_sec,
                        top_1_max=None,
                        top_1_min=None,
                        total_batch_size=None,
                        log_steps=None,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
56
57
                        warmup=1,
                        start_time_sec=None):
58
59
60
61
62
63
64
65
66
67
    """Report benchmark results by writing to local protobuf file.

    Args:
      stats: dict returned from keras models with known entries.
      wall_time_sec: the during of the benchmark execution in seconds
      top_1_max: highest passing level for top_1 accuracy.
      top_1_min: lowest passing level for top_1 accuracy.
      total_batch_size: Global batch-size.
      log_steps: How often the log was created for stats['step_timestamp_log'].
      warmup: number of entries in stats['step_timestamp_log'] to ignore.
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
68
      start_time_sec: the start time of the program in seconds since epoch.
69
70
71
72
    """

    metrics = []
    if 'eval_acc' in stats:
73
74
75
76
77
78
79
80
81
82
83
84
85
      metrics.append({
          'name': 'accuracy_top_1',
          'value': stats['eval_acc'],
          'min_value': top_1_min,
          'max_value': top_1_max
      })
      metrics.append({'name': 'eval_loss', 'value': stats['eval_loss']})

      metrics.append({
          'name': 'top_1_train_accuracy',
          'value': stats['train_acc']
      })
      metrics.append({'name': 'train_loss', 'value': stats['train_loss']})
86
87

    if (warmup and 'step_timestamp_log' in stats and
Ruoxin Sang's avatar
Ruoxin Sang committed
88
89
        len(stats['step_timestamp_log']) > warmup + 1):
      # first entry in the time_log is start of step 0. The rest of the
90
91
      # entries are the end of each step recorded
      time_log = stats['step_timestamp_log']
Will Cromar's avatar
Will Cromar committed
92
93
94
      steps_elapsed = time_log[-1].batch_index - time_log[warmup].batch_index
      time_elapsed = time_log[-1].timestamp - time_log[warmup].timestamp
      examples_per_sec = total_batch_size * (steps_elapsed / time_elapsed)
95
      metrics.append({'name': 'exp_per_second', 'value': examples_per_sec})
96
97

    if 'avg_exp_per_second' in stats:
98
99
100
101
      metrics.append({
          'name': 'avg_exp_per_second',
          'value': stats['avg_exp_per_second']
      })
102

A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
103
104
105
106
107
108
    if start_time_sec and 'step_timestamp_log' in stats:
      time_log = stats['step_timestamp_log']
      # time_log[0] is recorded at the beginning of the first step.
      startup_time = time_log[0].timestamp - start_time_sec
      metrics.append({'name': 'startup_time', 'value': startup_time})

109
    flags_str = flags_core.get_nondefault_flags_as_str()
110
111
112
113
114
    self.report_benchmark(
        iters=-1,
        wall_time=wall_time_sec,
        metrics=metrics,
        extras={'flags': flags_str})
115
116
117
118
119
120
121
122
123
124
125
126


class Resnet50CtlAccuracy(CtlBenchmark):
  """Benchmark accuracy tests for ResNet50 in CTL."""

  def __init__(self, output_dir=None, root_data_dir=None, **kwargs):
    """A benchmark class.

    Args:
      output_dir: directory where to output e.g. log files
      root_data_dir: directory under which to look for dataset
      **kwargs: arbitrary named arguments. This is needed to make the
127
128
        constructor forward compatible in case PerfZero provides more named
        arguments before updating the constructor.
129
130
    """

Hongkun Yu's avatar
Hongkun Yu committed
131
    flag_methods = [common.define_keras_flags]
132

133
    self.data_dir = os.path.join(root_data_dir, 'imagenet')
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
    super(Resnet50CtlAccuracy, self).__init__(
        output_dir=output_dir, flag_methods=flag_methods)

  def benchmark_8_gpu(self):
    """Test Keras model with eager, dist_strat and 8 GPUs."""
    self._setup()
    FLAGS.num_gpus = 8
    FLAGS.data_dir = self.data_dir
    FLAGS.batch_size = 128 * 8
    FLAGS.train_epochs = 90
    FLAGS.epochs_between_evals = 10
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu')
    FLAGS.dtype = 'fp32'
    # Add some thread tunings to improve performance.
    FLAGS.datasets_num_private_threads = 14
    self._run_and_report_benchmark()

151
152
153
154
155
156
157
158
159
160
161
162
163
164
  def benchmark_8_gpu_fp16(self):
    """Test Keras model with eager, 8 GPUs with tf.keras mixed precision."""
    self._setup()
    FLAGS.num_gpus = 8
    FLAGS.data_dir = self.data_dir
    FLAGS.batch_size = 256 * 8
    FLAGS.train_epochs = 90
    FLAGS.epochs_between_evals = 10
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_fp16')
    FLAGS.dtype = 'fp16'
    # Add some thread tunings to improve performance.
    FLAGS.datasets_num_private_threads = 14
    self._run_and_report_benchmark()

165
  def benchmark_8_gpu_amp(self):
166
    """Test Keras model with 8 GPUs and mixed precision via graph rewrite."""
167
168
169
    self._setup()
    FLAGS.num_gpus = 8
    FLAGS.data_dir = self.data_dir
170
    FLAGS.batch_size = 256 * 8
171
172
173
174
175
176
177
178
179
    FLAGS.train_epochs = 90
    FLAGS.epochs_between_evals = 10
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_amp')
    FLAGS.dtype = 'fp16'
    FLAGS.fp16_implementation = 'graph_rewrite'
    # Add some thread tunings to improve performance.
    FLAGS.datasets_num_private_threads = 14
    self._run_and_report_benchmark()

180
  @benchmark_wrappers.enable_runtime_flags
181
182
  def _run_and_report_benchmark(self):
    start_time_sec = time.time()
Hongkun Yu's avatar
Hongkun Yu committed
183
    stats = resnet_ctl_imagenet_main.run(flags.FLAGS)
184
185
186
187
188
189
190
191
    wall_time_sec = time.time() - start_time_sec

    super(Resnet50CtlAccuracy, self)._report_benchmark(
        stats,
        wall_time_sec,
        top_1_min=MIN_TOP_1_ACCURACY,
        top_1_max=MAX_TOP_1_ACCURACY,
        total_batch_size=FLAGS.batch_size,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
192
193
        log_steps=100,
        start_time_sec=start_time_sec)
194
195
196
197
198
199
200
201
202

  def _get_model_dir(self, folder_name):
    return os.path.join(self.output_dir, folder_name)


class Resnet50CtlBenchmarkBase(CtlBenchmark):
  """Resnet50 benchmarks."""

  def __init__(self, output_dir=None, default_flags=None):
Hongkun Yu's avatar
Hongkun Yu committed
203
    flag_methods = [common.define_keras_flags]
204
205
206
207
208
209

    super(Resnet50CtlBenchmarkBase, self).__init__(
        output_dir=output_dir,
        flag_methods=flag_methods,
        default_flags=default_flags)

210
  @benchmark_wrappers.enable_runtime_flags
211
212
  def _run_and_report_benchmark(self):
    start_time_sec = time.time()
Hongkun Yu's avatar
Hongkun Yu committed
213
    stats = resnet_ctl_imagenet_main.run(FLAGS)
214
215
216
217
218
219
220
221
222
223
224
    wall_time_sec = time.time() - start_time_sec

    # Number of logged step time entries that are excluded in performance
    # report. We keep results from last 100 batches in this case.
    warmup = (FLAGS.train_steps - 100) // FLAGS.log_steps

    super(Resnet50CtlBenchmarkBase, self)._report_benchmark(
        stats,
        wall_time_sec,
        total_batch_size=FLAGS.batch_size,
        log_steps=FLAGS.log_steps,
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
225
226
        warmup=warmup,
        start_time_sec=start_time_sec)
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242

  def benchmark_1_gpu_no_dist_strat(self):
    """Test Keras model with 1 GPU, no distribution strategy."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.distribution_strategy = 'off'
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_no_dist_strat')
    FLAGS.batch_size = 128
    self._run_and_report_benchmark()

  def benchmark_1_gpu(self):
    """Test Keras model with 1 GPU."""
    self._setup()

    FLAGS.num_gpus = 1
243
    FLAGS.distribution_strategy = 'one_device'
244
245
246
247
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu')
    FLAGS.batch_size = 128
    self._run_and_report_benchmark()

248
249
250
251
252
253
254
255
256
257
258
  def benchmark_1_gpu_fp16(self):
    """Test Keras model with 1 GPU with tf.keras mixed precision."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.distribution_strategy = 'one_device'
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_fp16')
    FLAGS.batch_size = 256
    FLAGS.dtype = 'fp16'
    self._run_and_report_benchmark()

259
260
261
262
263
  def benchmark_1_gpu_amp(self):
    """Test Keras model with 1 GPU with automatic mixed precision."""
    self._setup()

    FLAGS.num_gpus = 1
264
    FLAGS.distribution_strategy = 'one_device'
265
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_amp')
266
    FLAGS.batch_size = 256
267
268
269
270
271
272
273
274
275
    FLAGS.dtype = 'fp16'
    FLAGS.fp16_implementation = 'graph_rewrite'
    self._run_and_report_benchmark()

  def benchmark_xla_1_gpu_amp(self):
    """Test Keras model with XLA and 1 GPU with automatic mixed precision."""
    self._setup()

    FLAGS.num_gpus = 1
276
    FLAGS.distribution_strategy = 'one_device'
277
    FLAGS.model_dir = self._get_model_dir('benchmark_xla_1_gpu_amp')
278
    FLAGS.batch_size = 256
279
280
281
282
283
    FLAGS.dtype = 'fp16'
    FLAGS.fp16_implementation = 'graph_rewrite'
    FLAGS.enable_xla = True
    self._run_and_report_benchmark()

284
285
286
287
288
  def benchmark_1_gpu_eager(self):
    """Test Keras model with 1 GPU in pure eager mode."""
    self._setup()

    FLAGS.num_gpus = 1
289
    FLAGS.distribution_strategy = 'one_device'
290
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_eager')
291
    FLAGS.batch_size = 128
292
    FLAGS.use_tf_function = False
293
    FLAGS.use_tf_while_loop = False
294
    FLAGS.single_l2_loss_op = True
295
296
    self._run_and_report_benchmark()

297
298
299
300
301
302
303
  def benchmark_1_gpu_fp16_eager(self):
    """Test Keras model with 1 GPU with fp16 and pure eager mode."""
    self._setup()

    FLAGS.num_gpus = 1
    FLAGS.distribution_strategy = 'one_device'
    FLAGS.model_dir = self._get_model_dir('benchmark_1_gpu_fp16_eager')
304
    FLAGS.batch_size = 240
305
306
    FLAGS.dtype = 'fp16'
    FLAGS.use_tf_function = False
307
    FLAGS.use_tf_while_loop = False
308
309
310
    FLAGS.single_l2_loss_op = True
    self._run_and_report_benchmark()

311
312
313
314
315
  def benchmark_8_gpu(self):
    """Test Keras model with 8 GPUs."""
    self._setup()

    FLAGS.num_gpus = 8
316
    FLAGS.distribution_strategy = 'mirrored'
317
318
319
320
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu')
    FLAGS.batch_size = 128 * 8  # 8 GPUs
    self._run_and_report_benchmark()

321
322
323
324
325
326
327
328
329
330
331
  def benchmark_8_gpu_fp16(self):
    """Test Keras model with 8 GPUs with tf.keras mixed precision."""
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.distribution_strategy = 'mirrored'
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_fp16')
    FLAGS.batch_size = 256 * 8  # 8 GPUs
    FLAGS.dtype = 'fp16'
    self._run_and_report_benchmark()

Sai Ganesh Bandiatmakuri's avatar
Sai Ganesh Bandiatmakuri committed
332
333
334
335
336
337
  def benchmark_8_gpu_eager(self):
    """Test Keras model with 8 GPUs, eager, fp32."""
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.use_tf_function = False
338
    FLAGS.use_tf_while_loop = False
Sai Ganesh Bandiatmakuri's avatar
Sai Ganesh Bandiatmakuri committed
339
340
341
342
343
344
345
346
347
348
349
350
    FLAGS.distribution_strategy = 'mirrored'
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_eager')
    FLAGS.batch_size = 128
    self._run_and_report_benchmark()

  def benchmark_8_gpu_eager_fp16(self):
    """Test Keras model with 8 GPUs, eager, fp16."""
    self._setup()

    FLAGS.num_gpus = 8
    FLAGS.dtype = 'fp16'
    FLAGS.use_tf_function = False
351
    FLAGS.use_tf_while_loop = False
Sai Ganesh Bandiatmakuri's avatar
Sai Ganesh Bandiatmakuri committed
352
353
354
355
356
    FLAGS.distribution_strategy = 'mirrored'
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_eager_fp16')
    FLAGS.batch_size = 128
    self._run_and_report_benchmark()

357
358
359
360
361
  def benchmark_8_gpu_amp(self):
    """Test Keras model with 8 GPUs with automatic mixed precision."""
    self._setup()

    FLAGS.num_gpus = 8
362
    FLAGS.distribution_strategy = 'mirrored'
363
    FLAGS.model_dir = self._get_model_dir('benchmark_8_gpu_amp')
364
    FLAGS.batch_size = 256 * 8  # 8 GPUs
365
366
367
368
369
370
371
372
373
    FLAGS.dtype = 'fp16'
    FLAGS.fp16_implementation = 'graph_rewrite'
    self._run_and_report_benchmark()

  def benchmark_xla_8_gpu_amp(self):
    """Test Keras model with XLA and 8 GPUs with automatic mixed precision."""
    self._setup()

    FLAGS.num_gpus = 8
374
    FLAGS.distribution_strategy = 'mirrored'
375
    FLAGS.model_dir = self._get_model_dir('benchmark_xla_8_gpu_amp')
376
    FLAGS.batch_size = 256 * 8  # 8 GPUs
377
378
379
380
381
    FLAGS.dtype = 'fp16'
    FLAGS.fp16_implementation = 'graph_rewrite'
    FLAGS.enable_xla = True
    self._run_and_report_benchmark()

382
383
  def fill_report_object(self, stats):
    super(Resnet50CtlBenchmarkBase, self).fill_report_object(
384
        stats, total_batch_size=FLAGS.batch_size, log_steps=FLAGS.log_steps)
385
386
387
388
389
390
391
392
393
394


class Resnet50CtlBenchmarkSynth(Resnet50CtlBenchmarkBase):
  """Resnet50 synthetic benchmark tests."""

  def __init__(self, output_dir=None, root_data_dir=None, **kwargs):
    def_flags = {}
    def_flags['skip_eval'] = True
    def_flags['use_synthetic_data'] = True
    def_flags['train_steps'] = 110
Ruoxin Sang's avatar
Ruoxin Sang committed
395
    def_flags['steps_per_loop'] = 20
396
397
398
399
400
401
402
403
404
405
406
407
    def_flags['log_steps'] = 10

    super(Resnet50CtlBenchmarkSynth, self).__init__(
        output_dir=output_dir, default_flags=def_flags)


class Resnet50CtlBenchmarkReal(Resnet50CtlBenchmarkBase):
  """Resnet50 real data benchmark tests."""

  def __init__(self, output_dir=None, root_data_dir=None, **kwargs):
    def_flags = {}
    def_flags['skip_eval'] = True
Zongwei Zhou's avatar
Zongwei Zhou committed
408
    def_flags['data_dir'] = os.path.join(root_data_dir, 'imagenet')
409
    def_flags['train_steps'] = 110
Ruoxin Sang's avatar
Ruoxin Sang committed
410
    def_flags['steps_per_loop'] = 20
411
412
413
414
415
    def_flags['log_steps'] = 10

    super(Resnet50CtlBenchmarkReal, self).__init__(
        output_dir=output_dir, default_flags=def_flags)

416

417
418
if __name__ == '__main__':
  tf.test.main()