image_classification.py 10.9 KB
Newer Older
Abdullah Rashwan's avatar
Abdullah Rashwan committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
# Lint as: python3
# Copyright 2020 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Image classification configuration definition."""
import os
Abdullah Rashwan's avatar
Abdullah Rashwan committed
18
from typing import List, Optional
Abdullah Rashwan's avatar
Abdullah Rashwan committed
19
import dataclasses
20
from official.core import config_definitions as cfg
Abdullah Rashwan's avatar
Abdullah Rashwan committed
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
from official.core import exp_factory
from official.modeling import hyperparams
from official.modeling import optimization
from official.vision.beta.configs import backbones
from official.vision.beta.configs import common


@dataclasses.dataclass
class DataConfig(cfg.DataConfig):
  """Input config for training."""
  input_path: str = ''
  global_batch_size: int = 0
  is_training: bool = True
  dtype: str = 'float32'
  shuffle_buffer_size: int = 10000
  cycle_length: int = 10
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
37
  aug_policy: Optional[str] = None  # None, 'autoaug', or 'randaug'
Abdullah Rashwan's avatar
Abdullah Rashwan committed
38
39
40
41


@dataclasses.dataclass
class ImageClassificationModel(hyperparams.Config):
Pengchong Jin's avatar
Pengchong Jin committed
42
  """The model config."""
Abdullah Rashwan's avatar
Abdullah Rashwan committed
43
44
45
46
47
  num_classes: int = 0
  input_size: List[int] = dataclasses.field(default_factory=list)
  backbone: backbones.Backbone = backbones.Backbone(
      type='resnet', resnet=backbones.ResNet())
  dropout_rate: float = 0.0
Pengchong Jin's avatar
Pengchong Jin committed
48
49
  norm_activation: common.NormActivation = common.NormActivation(
      use_sync_bn=False)
Abdullah Rashwan's avatar
Abdullah Rashwan committed
50
51
52
53
54
55
56
57
58
59
60
  # Adds a BatchNormalization layer pre-GlobalAveragePooling in classification
  add_head_batch_norm: bool = False


@dataclasses.dataclass
class Losses(hyperparams.Config):
  one_hot: bool = True
  label_smoothing: float = 0.0
  l2_weight_decay: float = 0.0


Pengchong Jin's avatar
Pengchong Jin committed
61
62
63
64
65
@dataclasses.dataclass
class Evaluation(hyperparams.Config):
  top_k: int = 5


Abdullah Rashwan's avatar
Abdullah Rashwan committed
66
67
@dataclasses.dataclass
class ImageClassificationTask(cfg.TaskConfig):
Pengchong Jin's avatar
Pengchong Jin committed
68
  """The task config."""
Abdullah Rashwan's avatar
Abdullah Rashwan committed
69
70
71
72
  model: ImageClassificationModel = ImageClassificationModel()
  train_data: DataConfig = DataConfig(is_training=True)
  validation_data: DataConfig = DataConfig(is_training=False)
  losses: Losses = Losses()
Pengchong Jin's avatar
Pengchong Jin committed
73
  evaluation: Evaluation = Evaluation()
Abdullah Rashwan's avatar
Abdullah Rashwan committed
74
75
  init_checkpoint: Optional[str] = None
  init_checkpoint_modules: str = 'all'  # all or backbone
Abdullah Rashwan's avatar
Abdullah Rashwan committed
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105


@exp_factory.register_config_factory('image_classification')
def image_classification() -> cfg.ExperimentConfig:
  """Image classification general."""
  return cfg.ExperimentConfig(
      task=ImageClassificationTask(),
      trainer=cfg.TrainerConfig(),
      restrictions=[
          'task.train_data.is_training != None',
          'task.validation_data.is_training != None'
      ])


IMAGENET_TRAIN_EXAMPLES = 1281167
IMAGENET_VAL_EXAMPLES = 50000
IMAGENET_INPUT_PATH_BASE = 'imagenet-2012-tfrecord'


@exp_factory.register_config_factory('resnet_imagenet')
def image_classification_imagenet() -> cfg.ExperimentConfig:
  """Image classification on imagenet with resnet."""
  train_batch_size = 4096
  eval_batch_size = 4096
  steps_per_epoch = IMAGENET_TRAIN_EXAMPLES // train_batch_size
  config = cfg.ExperimentConfig(
      task=ImageClassificationTask(
          model=ImageClassificationModel(
              num_classes=1001,
              input_size=[224, 224, 3],
A. Unique TensorFlower's avatar
A. Unique TensorFlower committed
106
107
              backbone=backbones.Backbone(
                  type='resnet', resnet=backbones.ResNet(model_id=50)),
Abdullah Rashwan's avatar
Abdullah Rashwan committed
108
              norm_activation=common.NormActivation(
Pengchong Jin's avatar
Pengchong Jin committed
109
                  norm_momentum=0.9, norm_epsilon=1e-5, use_sync_bn=False)),
Abdullah Rashwan's avatar
Abdullah Rashwan committed
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
          losses=Losses(l2_weight_decay=1e-4),
          train_data=DataConfig(
              input_path=os.path.join(IMAGENET_INPUT_PATH_BASE, 'train*'),
              is_training=True,
              global_batch_size=train_batch_size),
          validation_data=DataConfig(
              input_path=os.path.join(IMAGENET_INPUT_PATH_BASE, 'valid*'),
              is_training=False,
              global_batch_size=eval_batch_size)),
      trainer=cfg.TrainerConfig(
          steps_per_loop=steps_per_epoch,
          summary_interval=steps_per_epoch,
          checkpoint_interval=steps_per_epoch,
          train_steps=90 * steps_per_epoch,
          validation_steps=IMAGENET_VAL_EXAMPLES // eval_batch_size,
          validation_interval=steps_per_epoch,
          optimizer_config=optimization.OptimizationConfig({
              'optimizer': {
                  'type': 'sgd',
                  'sgd': {
                      'momentum': 0.9
                  }
              },
              'learning_rate': {
                  'type': 'stepwise',
                  'stepwise': {
                      'boundaries': [
                          30 * steps_per_epoch, 60 * steps_per_epoch,
                          80 * steps_per_epoch
                      ],
                      'values': [
141
142
143
144
                          0.1 * train_batch_size / 256,
                          0.01 * train_batch_size / 256,
                          0.001 * train_batch_size / 256,
                          0.0001 * train_batch_size / 256,
Abdullah Rashwan's avatar
Abdullah Rashwan committed
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
                      ]
                  }
              },
              'warmup': {
                  'type': 'linear',
                  'linear': {
                      'warmup_steps': 5 * steps_per_epoch,
                      'warmup_learning_rate': 0
                  }
              }
          })),
      restrictions=[
          'task.train_data.is_training != None',
          'task.validation_data.is_training != None'
      ])

  return config


@exp_factory.register_config_factory('revnet_imagenet')
def image_classification_imagenet_revnet() -> cfg.ExperimentConfig:
  """Returns a revnet config for image classification on imagenet."""
  train_batch_size = 4096
  eval_batch_size = 4096
  steps_per_epoch = IMAGENET_TRAIN_EXAMPLES // train_batch_size

  config = cfg.ExperimentConfig(
      task=ImageClassificationTask(
          model=ImageClassificationModel(
              num_classes=1001,
              input_size=[224, 224, 3],
              backbone=backbones.Backbone(
                  type='revnet', revnet=backbones.RevNet(model_id=56)),
              norm_activation=common.NormActivation(
Pengchong Jin's avatar
Pengchong Jin committed
179
                  norm_momentum=0.9, norm_epsilon=1e-5, use_sync_bn=False),
Abdullah Rashwan's avatar
Abdullah Rashwan committed
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
              add_head_batch_norm=True),
          losses=Losses(l2_weight_decay=1e-4),
          train_data=DataConfig(
              input_path=os.path.join(IMAGENET_INPUT_PATH_BASE, 'train*'),
              is_training=True,
              global_batch_size=train_batch_size),
          validation_data=DataConfig(
              input_path=os.path.join(IMAGENET_INPUT_PATH_BASE, 'valid*'),
              is_training=False,
              global_batch_size=eval_batch_size)),
      trainer=cfg.TrainerConfig(
          steps_per_loop=steps_per_epoch,
          summary_interval=steps_per_epoch,
          checkpoint_interval=steps_per_epoch,
          train_steps=90 * steps_per_epoch,
          validation_steps=IMAGENET_VAL_EXAMPLES // eval_batch_size,
          validation_interval=steps_per_epoch,
          optimizer_config=optimization.OptimizationConfig({
              'optimizer': {
                  'type': 'sgd',
                  'sgd': {
                      'momentum': 0.9
                  }
              },
              'learning_rate': {
                  'type': 'stepwise',
                  'stepwise': {
                      'boundaries': [
                          30 * steps_per_epoch, 60 * steps_per_epoch,
                          80 * steps_per_epoch
                      ],
                      'values': [0.8, 0.08, 0.008, 0.0008]
                  }
              },
              'warmup': {
                  'type': 'linear',
                  'linear': {
                      'warmup_steps': 5 * steps_per_epoch,
                      'warmup_learning_rate': 0
                  }
              }
          })),
      restrictions=[
          'task.train_data.is_training != None',
          'task.validation_data.is_training != None'
      ])

  return config
228
229
230
231
232


@exp_factory.register_config_factory('mobilenet_imagenet')
def image_classification_imagenet_mobilenet() -> cfg.ExperimentConfig:
  """Image classification on imagenet with mobilenet."""
233
234
  train_batch_size = 4096
  eval_batch_size = 4096
235
236
237
238
239
240
241
242
243
244
  steps_per_epoch = IMAGENET_TRAIN_EXAMPLES // train_batch_size
  config = cfg.ExperimentConfig(
      task=ImageClassificationTask(
          model=ImageClassificationModel(
              num_classes=1001,
              dropout_rate=0.2,
              input_size=[224, 224, 3],
              backbone=backbones.Backbone(
                  type='mobilenet',
                  mobilenet=backbones.MobileNet(
245
                      model_id='MobileNetV2', filter_size_scale=1.0)),
246
              norm_activation=common.NormActivation(
Pengchong Jin's avatar
Pengchong Jin committed
247
                  norm_momentum=0.997, norm_epsilon=1e-3, use_sync_bn=False)),
248
          losses=Losses(l2_weight_decay=1e-5, label_smoothing=0.1),
249
250
251
252
253
254
255
256
257
258
259
260
          train_data=DataConfig(
              input_path=os.path.join(IMAGENET_INPUT_PATH_BASE, 'train*'),
              is_training=True,
              global_batch_size=train_batch_size),
          validation_data=DataConfig(
              input_path=os.path.join(IMAGENET_INPUT_PATH_BASE, 'valid*'),
              is_training=False,
              global_batch_size=eval_batch_size)),
      trainer=cfg.TrainerConfig(
          steps_per_loop=steps_per_epoch,
          summary_interval=steps_per_epoch,
          checkpoint_interval=steps_per_epoch,
261
          train_steps=500 * steps_per_epoch,
262
263
264
265
266
267
          validation_steps=IMAGENET_VAL_EXAMPLES // eval_batch_size,
          validation_interval=steps_per_epoch,
          optimizer_config=optimization.OptimizationConfig({
              'optimizer': {
                  'type': 'rmsprop',
                  'rmsprop': {
268
                      'rho': 0.9,
269
270
271
272
273
274
275
                      'momentum': 0.9,
                      'epsilon': 0.002,
                  }
              },
              'learning_rate': {
                  'type': 'exponential',
                  'exponential': {
276
277
278
279
280
281
282
283
                      'initial_learning_rate':
                          0.008 * (train_batch_size // 128),
                      'decay_steps':
                          int(2.5 * steps_per_epoch),
                      'decay_rate':
                          0.98,
                      'staircase':
                          True
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
                  }
              },
              'warmup': {
                  'type': 'linear',
                  'linear': {
                      'warmup_steps': 5 * steps_per_epoch,
                      'warmup_learning_rate': 0
                  }
              },
          })),
      restrictions=[
          'task.train_data.is_training != None',
          'task.validation_data.is_training != None'
      ])

  return config